Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267
Article
CAS
Google Scholar
Abdelhadi AA, Elarabi NI, Salim RG, Sharaf AN, Abosereh NA (2016) Identification, characterization and genetic improvement of bacteriocin producing lactic acid bacteria. Biotechnology 15(3-4):76–85. https://doi.org/10.3923/biotech.2016.76.85
Article
CAS
Google Scholar
Bancroft JD, Gamble M (2008) Theory and practice of histological techniques, 6th edn. Churchill Livingstone, Elsevier, China
Google Scholar
Bonin A, Paris M, Tetreau G, David JP, Després L (2009) Candidate genes revealed by a genome scan for mosquito resistance to a bacterial insecticide: sequence and gene expression variations. BMC Genomics 10:551. https://doi.org/10.1186/1471-2164-10-551
Article
CAS
PubMed
PubMed Central
Google Scholar
Boyer S, Paris M, Jego S, Lempérière G, Ravanel P (2012) Influence of insecticide Bacillus thuringiensis subsp. israelensis treatments on resistance and enzyme activities in Aedes rusticus larvae (Diptera: Culicidae). Biol Control 62:75–81. https://doi.org/10.1016/j.biocontrol.2012.02.001
Article
Google Scholar
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3
Article
CAS
PubMed
Google Scholar
Castagnola A, Jurat-fuentes JL (2016) Intestinal regeneration as an insect resistance mechanism to entomopathogenic bacteria. Curr Opin Insect Sci 15:104–110. https://doi.org/10.1016/j.cois.2016.04.008
Article
PubMed
PubMed Central
Google Scholar
Cavados C, Majerowicz S, Chaves J, Araújo-coutinho C, Rabinovitch L (2004) Histopathological and ultrastructural effects of delta-endotoxins of Bacillus thuringiensis Serovar israelensis in the Midgut of Simulium pertinax Larvae (Diptera, Simuliidae). Mem Inst Oswaldo Cruz 99:493–498. https://doi.org/10.1590/S0074-02762004000500006
Article
CAS
PubMed
Google Scholar
Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890
Article
CAS
PubMed
PubMed Central
Google Scholar
Dhania NK, Chauhan VK, Chaitanya RK, Dutta-gupta A (2019) Midgut de novo transcriptome analysis and gene expression profiling of Achaea janata larvae exposed with Bacillus thuringiensis (Bt)-based biopesticide formulation. Comp Biochem Physiol Part D 30:81–90. https://doi.org/10.1016/j.cbd.2019.02.005
Article
CAS
Google Scholar
Dingha BN, Moar WJ, Appel AG (2004) Effects of Bacillus thuringiensis Cry1C toxin on the metabolic rate of Bt Cry1C resistant and susceptible Spodoptera exigua (Lepidoptera: Noctuidae). Physiol Entomol 29:409–418. https://doi.org/10.1111/j.0307-6962.2004.00409.x
Article
CAS
Google Scholar
El-defrawi M, Toppozada A, Mansour N, Zeid M (1964) Toxicological studies on the Egyptian cotton leaf worm, Prodenia litura. I. Susceptibility of Different Larval Instars of Prodenia to Insecticides. J Econ Entomol 57:591–593. https://doi.org/10.1093/jee/57.4.591
Article
CAS
Google Scholar
Fabrick JA, Mathew LG, Leroy DM, Hull JJ, Unnithan GC, Yelich AJ, Carrière Y, Li X, Tabashnik BE (2019) Reduced cadherin expression associated with resistance to Bt toxin Cry1Acin pink bollworm. Pest Manag Sci 76:67–74. https://doi.org/10.1002/ps.5496
Article
CAS
PubMed
Google Scholar
Forcada C, Alcácer E, Garcerá MD, Tato A, Martínez R (1999) Resistance to Bacillus thuringiensis Cry1Ac toxin in three strains of Heliothis virescens: proteolytic and SEM study of the larval midgut. Arch Insect Biochem Physiol 42:51–63 https://doi.org/10.1002/(SICI)1520-6327(199909)42:1<51::AID-ARCH6>3.0.CO;2-6
Article
CAS
PubMed
Google Scholar
ISAAA (2017) Global status of commercialized biotech/GM crops in 2017: biotech crop adoption surges as economic benefits accumulate in 22 years. ISAAA Briefs ISAAA, Ithaca, NY
Google Scholar
James C (2009) Brief 41: Global status of commercialized biotech/GM crops: 2009. ISAAA Brief, Ithaca, NY
Google Scholar
Jin L, Wang J, Guan F, Zhang J, Yu S, Liu S, Xue Y, Li L, Wu S, Wang X, Yang Y, Abdelgaffar H, Jurat-fuentes JL, Tabashnik BE, Wu Y (2018) Dominant point mutation in a tetraspanin gene associated with field-evolved resistance of cotton bollworm to transgenic Bt cotton. Proc Natl Acad Sci 115:11760–11765. https://doi.org/10.1073/pnas.1812138115
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin T, Chang X, Gatehouse AMR, Wang Z, Edwards MG, He K (2014) Down regulation and mutation of a cadherin gene associated with Cry1Ac resistance in the Asian corn borer, Ostrinia furnacalis (Guenée). Toxins 6:2676–2693. https://doi.org/10.3390/toxins6092676
Article
CAS
PubMed
PubMed Central
Google Scholar
Jurat-fuentes JL, Gahan LJ, Gould FL, Heckel DG, Adang MJ (2004) The HevCaLP protein mediates binding specificity of the Cry1A class of Bacillus thuringiensis toxins in Heliothis virescens. Biochemistry 43:14299–14305. https://doi.org/10.1021/bi048500i
Article
CAS
PubMed
Google Scholar
Liu C, Xiao Y, Li X, Oppert B, Tabashnik BE, Wu K (2014) Cis-mediated down-regulation of a trypsin gene associated with Bt resistance in cotton bollworm. Sci Rep 4:7219. https://doi.org/10.1038/srep07219
Article
CAS
PubMed
PubMed Central
Google Scholar
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262
Article
CAS
PubMed
Google Scholar
Moussa S, Biaomy F, Aiad K, Khalil H, Abd El-latif AO (2020) Bacillus thuringiensis Cry1C resistance development and its processing pattern in Egyptian cotton leaf worm: Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Egypt J Biol Pest Control 30(1):1–5. https://doi.org/10.1186/s41938-020-00237-w
Article
Google Scholar
Moussa S, Kamel E, Ismail IM, Mohammed A (2016) Inheritance of Bacillus thuringiensis Cry1C resistance in Egyptian cotton leafworm, Spodoptera littoralis (Lepidoptera: Noctuidae). Entomol Res 46:61–69. https://doi.org/10.1111/1748-5967.12148
Article
CAS
Google Scholar
Pardo-lópez L, Soberón M, Bravo A (2013) Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiol Rev 37:3–22. https://doi.org/10.1111/j.1574-6976.2012.00341.x
Article
CAS
PubMed
Google Scholar
Pavlidi N, Vontas J, Van LT (2018) The role of glutathione S-transferases (GSTs) in insecticide resistance in crop pests and disease vectors. Curr Opin Insect Sci 27:97–102. https://doi.org/10.1016/j.cois.2018.04.007
Article
PubMed
Google Scholar
Pigott CR, Ellar DJ (2007) Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol Mol Biol Rev 71:255–281. https://doi.org/10.1128/MMBR.00034-06
Article
CAS
PubMed
PubMed Central
Google Scholar
Qiu L, Wang P, Wu T, Li B, Wang X, Lei C, Lin Y, Zhao J, Ma W (2018) Down regulation of Chilo suppressalis alkaline phosphatase genes associated with resistance to three transgenic Bacillus thuringiensis rice lines. Insect Mol Biol 27:83–89. https://doi.org/10.1111/imb.12349
Article
CAS
PubMed
Google Scholar
Rajagopal R, Arora N, Sivakumar S, Rao NGV, Nimbalkar SA, Bhatnagar RK (2009) Resistance of Helicoverpa armigera to Cry1Ac toxin from Bacillus thuringiensis is due to improper processing of the protoxin. Biochem J 419:309–316. https://doi.org/10.1042/BJ20081152
Article
CAS
PubMed
Google Scholar
Ren XL, Hu HY, Jiang WL, Ma XY, Ma YJ, Li GQ, Ma Y (2018) Three GPI anchored alkaline phosphatases are involved in the intoxication of Cry1Ca a toxin to Spodoptera exigua larvae. J Invertebr Pathol 151:32–40. https://doi.org/10.1016/j.jip.2017.10.009
Article
CAS
PubMed
Google Scholar
Shabbir MZ, Zhang T, Wang Z, He K (2019) Transcriptome and proteome alternation with resistance to Bacillus thuringiensis Cry1Ah toxin in Ostrinia furnacalis. Front Physiol 10:27. https://doi.org/10.3389/fphys.2019.00027
Article
PubMed
PubMed Central
Google Scholar
Soberón M, Gill SS, Bravo A (2009) Signaling versus punching hole: how do Bacillus thuringiensis toxins kill insect midgut cells? Cell Mol Life Sci 66:1337–1349. https://doi.org/10.1007/s00018-008-8330-9
Article
CAS
PubMed
Google Scholar
Soberón M, Monnerat R, Bravo A (2018) Mode of action of Cry toxins from Bacillus thuringiensis and resistance mechanisms. In: Gopalakrishnakone P, Stiles B, Alape-girón A, Dubreuil JD, Mandal M (eds.) Microbial Toxins. 1 ed Springer Netherlands.
Tabashnik BE, Bre´vault T, Carrie`re Y (2013) Insect resistance to Bt crops: lessons from the Þrst billion acres. Nat Biotechnol 31:510–521. https://doi.org/10.1038/nbt.2597
Article
CAS
PubMed
Google Scholar
van Lenteren JC, Bolckmans K, Köhl J, Ravensberg WJ, Urbaneja A (2018) Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl. 63(1):39–59. https://doi.org/10.1007/s10526-017-9801-4
Article
Google Scholar
Vellichirammal NN, Wang H, Eyun SI, Moriyama EN, Coates BS, Miller NJ, Siegfried BD (2015) Transcriptional analysis of susceptible and resistant European corn borer strains and their response to Cry1F protoxin. BMC Genomics 16:558. https://doi.org/10.1186/s12864-015-1751-6
Article
CAS
Google Scholar
Walsh J, Clucas G, MacManes M, Thomas K, Kovach A (2018) Divergent selection and drift shape the genomes of two avian sister species spanning a saline-freshwater ecotone. bioRxiv. https://doi.org/10.1101/344614
Wang G, Wu K, Liang G, Guo Y (2005) Gene cloning and expression of cadherin in midgut of Helicoverpa armigera and its Cry1A binding region. Sci China C Life Sci 48:346–356. https://doi.org/10.1360/03yc0273
Article
CAS
PubMed
Google Scholar
Wei J, Liang G, Wang B, Zhong F, Chen L, Khaing MM, Zhang J, Guo Y, Wu K, Tabashnik BE (2016) Activation of Bt protoxin Cry1Ac in resistant and susceptible cotton bollworm. PLoS One 11:e0156560. https://doi.org/10.1371/journal.pone.0156560
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao Y, Wu K (2019) Recent progress on the interaction between insects and Bacillus thuringiensis crops. Philos Trans R Soc B 374:20180316. https://doi.org/10.1098/rstb.2018.0316
Article
CAS
Google Scholar
Xu X, Yu L, Wu Y (2005) Disruption of a cadherin gene associated with resistance to Cry1Ac δ-endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Appl Environ Microbiol 71:948–954. https://doi.org/10.1128/AEM.71.2.948-954.2005
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Y, Zhu YC, Ottea J, Husseneder C, Leonard BR, Abel C, Luttrell R, Huang F (2011) Down regulation of a gene for cadherin, but not alkaline phosphatase, associated with Cry1Ab resistance in the sugarcane borer Diatraea saccharalis. PLoS One 6. https://doi.org/10.1371/journal.pone.0025783
Zhang T, Coates BS, Wang Y, Wang Y, Bai S, Wang Z, He K (2017) Down-regulation of aminopeptidase N and ABC transporter subfamily G transcripts in Cry1Ab and Cry1Ac resistant Asian corn borer, Ostrinia furnacalis (Lepidoptera: Crambidae). Int J Biol Sci 13:835–851. https://doi.org/10.7150/ijbs.18868
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Candas M, Griko NB, Taussig R, Bulla LA (2006) A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc Natl Acad Sci 103(26):9897–9902 https://doi.org/.1073/pnas.0604017103
Article
CAS
PubMed
PubMed Central
Google Scholar