Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267
Article
CAS
Google Scholar
Alewu B, Nosiri C (2011) Pesticides and human health. In: Stoytcheva M (ed), InTechopen. London, pp 231–250
Ali-Shtayeh MS, Abdel-Basit M, Jamous R (2002) Distribution, occurrence, and characterization of entomopathogenic fungi in agricultural soil in the Palestinian area. Mycopathologia 156:235–244. https://doi.org/10.1023/a:1023339103522
Article
Google Scholar
Aydın G, Yaşar B (2019) Comparison of color and attractant traps effect used for sampling apple blossom beetle (Tropinota hirta (poda, 1761) (Coleoptera, Scarabaeidae, Cetoniinae)). Appl Ecol Environ Res 17(4):7453–7462. https://doi.org/10.15666/aeer/1704_74537462
Article
Google Scholar
Benson DA, Karsch-Mizrachi I, Clark K, Lipman DJ, Ostell J, Sayers EW (2012) GenBank. Nucleic Acids Res 40(Database issue):D48–D53. https://doi.org/10.1093/nar/gkr1202
Article
CAS
Google Scholar
Bischoff J, Rehner S (2009) A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia 101:512–530. https://doi.org/10.3852/07-202
Article
CAS
Google Scholar
Chang JC, Wu SS, Liu YC, Yang YH, Tsai YF, Li YH, Tseng CT, Tang LC, Nai YS (2021) Construction and selection of an entomopathogenic fungal library from soil samples for controlling Spodoptera litura. Front Sustain Food Sys 5:596316. https://doi.org/10.3389/fsufs.2021.596316
Article
Google Scholar
Dennis C, Webster J (1971) Antagonistic properties of species groups of Trichoderma III. hyphal interaction. Trans Br Mycol Soc 57:363–369. https://doi.org/10.1016/S0007-1536(71)80050-5
Article
Google Scholar
Elzen GW, Hardee DD (2003) United States Department of Agriculture-Agricultural Research Service research on managing insect resistance to insecticides. Pest Manag Sci 59(6–7):770–776. https://doi.org/10.1002/ps.659
Article
CAS
Google Scholar
Goettel MS, Eilenberg J, Glare T (2005) Entomopathogenic fungi and their role in regulation of insect populations. In: Iatrou K, Gill SS (eds) Gilbert LI. Elsevier, Amsterdam, pp 361–405
Google Scholar
Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp 41:95–98
CAS
Google Scholar
Kutinkova H, Andreev R (2004) Integrated pest management in sweet cherry (Prunus avium L.) orchards in Bulgaria. J Fruit Ornam Plant Res 12:41–47
Google Scholar
Landum MC, Felix MR, Alho J, Garcia R, Cabrita MJ, Rei F, Varanda CMR (2016) Antagonistic activity of fungi of Olea europaea L. against Colletotrichum acutatum. Microbiol Res 183:100–108. https://doi.org/10.1016/j.micres.2015.12.001
Article
Google Scholar
Mantzoukas S, Eliopoulos PA (2020) Endophytic entomopathogenic fungi: a valuable biological control tool against plant pests. Appl Sci 10:360. https://doi.org/10.3390/app10010360
Article
Google Scholar
Mongkolsamrit S, Khonsanit A, Thanakitpipattana D, Tasanathai K, Noisripoom W, Lamlertthon S, Himaman W, Houbraken J, Samson RA, Luangsa-Ard J (2020) Revisiting Metarhizium and the description of new species from Thailand. Stud Mycol 5(95):171–251. https://doi.org/10.1016/j.simyco.2020.04.001
Article
Google Scholar
Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L (2016) Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front Public Health 4:148. https://doi.org/10.3389/fpubh.2016.00148
Article
Google Scholar
O’Donnell K, Cigelnik E (1997) Two divergent intra genomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are non-orthologous. Mol Phylo Evol 7:103–116. https://doi.org/10.1006/mpev.1996.0376
Article
Google Scholar
Rehner SA, Buckley E (2005) A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97:84–98. https://doi.org/10.3852/mycologia.97.1.84
Article
CAS
Google Scholar
Rehner SA, Posada F, Buckley EP, Infante F, Castillo A, Vega FE (2006) Phylogenetic origins of African and Neotropical Beauveria bassiana s.l. pathogens of the coffee berry borer Hypothenemus hampei. J Invertebr Pathol 93:11–21. https://doi.org/10.1016/j.jip.2006.04.005
Article
Google Scholar
Rehner S, Minnis A, Sung GH, Luangsa-Ard J, Devotto L (2011) Phylogeny and systematics of the anamorphic, entomopathogenic genus Beauveria. Mycologia 103:1055–1073. https://doi.org/10.3852/10-302
Article
Google Scholar
Republic of Turkey, Ministry of Agriculture and Forestry (2008) technical instructions of agricultural control of plant pests. General Directorate of Agricultural Research and Policies, Ankara
Google Scholar
Royse D, Ries S (1977) The influence of fungi isolated from peach twigs on the pathogenicity of Cytospora cincta. Pyhtopathol 68:603–607. https://doi.org/10.1094/Phyto-68-603
Article
Google Scholar
Sevim A, Demir I, Höfte M, Humber RA, Demirbag Z (2010a) Isolation and characterization of entomopathogenic fungi from hazelnut-growing region of Turkey. Biocontrol 55(2):279–297. https://doi.org/10.1007/s10526-009-9235-8
Article
Google Scholar
Sevim A, Demir I, Tanyeli E, Demirbağ Z (2010b) Screening of entomopathogenic fungi against the European spruce bark beetle, Dendroctonus micans (Coleoptera: Scolytidae). Biocont Sci Technol 20(1):3–11. https://doi.org/10.1080/09583150903305737
Article
Google Scholar
Sevim A, Höfte M, Demirbağ Z (2012) Genetic variability of Beauveria bassiana and Metarhizium anisopliae var. anisopliae isolates obtained from the Eastern Black Sea Region of Turkey. Turk J Biol 36(3):255–265. https://doi.org/10.3906/biy-1009-118
Article
Google Scholar
Skalicky A, Bohatá A, Šimková J, Osborne LS, Landa Z (2014) Selection of indigenous isolates of entomopathogenic soil fungus Metarhizium anisopliae under laboratory conditions. Folia Microbiol 59:269–276. https://doi.org/10.1007/s12223-013-0293-z
Article
CAS
Google Scholar
Sönmez E, Sevim A, Demirbağ Z, Demir İ (2016) Isolation, characterization, and virulence of entomopathogenic fungi from Gryllotalpa gryllotalpa (Orthoptera: Gryllotalpidae). Appl Entomol Zool 51:213–223. https://doi.org/10.1007/s13355-015-0390-3
Article
CAS
Google Scholar
St Leger RJ, Wang JB (2020) Metarhizium: Jack of all trades, master of many. Open Biol 10:200307. https://doi.org/10.1098/rsob.200307
Article
CAS
Google Scholar
Stiller JWB, Hall D (1997) The origin of red algae: Implications for plastide volution. Proc Nat Acad Sci 94:4520–4525. https://doi.org/10.1073/pnas.94.9.4520
Article
CAS
Google Scholar
Subchev MA, Toshova TB, Andreev R, Petrova V, Vasilina D, Maneva Spasova TS, Marinova N, Minkov P, Velchev DI (2011) Employing floral baited traps for detection and seasonal monitoring of Tropinota (Epicometis) hirta (Poda) (Coleoptera: Cetoniidae) in Bulgaria. Acta Zool Bulgar 63:269–276
Google Scholar
Sullivan CF, Parker BL, Skinner MA (2022) Review of commercial Metarhizium- and Beauveria-based biopesticides for the biological control of ticks in the USA. InSects 13(3):260. https://doi.org/10.3390/insects13030260
Article
Google Scholar
Tamura K, Stecher G, Kumar S (2021) MEGA11: Molecular evolutionary genetics analysis version 11. Mol Biol Evol 38(7):3022–3027. https://doi.org/10.1093/molbev/msab120
Article
CAS
Google Scholar
Toth M, Vuts J, Difranco F, Tabilio R, Baric B, Razov J, Toshova T, Subchev M, Sredkov I (2009) Detection and monitoring of Epicometis hirta Poda and Tropinota squalida Scop with the same trap. Acta Phytopathol Entomol Hungar 44(2):337–344. https://doi.org/10.1556/APhyt.44.2009.2.10
Article
Google Scholar
Villamizar LF, Barrera G, Hurst M, Glare TR (2021) Characterization of a new strain of Metarhizium novozealandicum with potential to be developed as a biopesticide. Mycology 12(4):261–278. https://doi.org/10.1080/21501203.2021.1935359
Article
CAS
Google Scholar
Vuts J, Szarukán I, Subchev M, Toshova T, Tóth M (2009) Improving the floral attractant to lure Epicometis hirta Poda (Coleoptera: Scarabaeidae, Cetoniinae). J Pest Sci 83(1):15–20. https://doi.org/10.1007/s10340-009-0263-z
Article
Google Scholar
White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Gelfand DH, Sninsky JJ, White TJ (eds) Innis MA. Academic Press, New York, pp 315–322
Google Scholar
Yadav A, Kour D, Kaur T, Devi R, Yadav A (2022) Endophytic fungal communities and their biotechnological implications for agro-environmental sustainability. Folia Microbiol 67:203–232. https://doi.org/10.1007/s12223-021-00939-0
Article
CAS
Google Scholar
Yaşar B, Çeşme İ, Baydar M, Aysal İ, Yazır A (2013) The effect on capturing of apple blossom beetle [(Epicometis hirta (Poda) (Coleoptera: Scarabaeidae)] feeding on the flowers of cherry trees by the funnel traps and different blue colors. Turk Bull Entomol 3(2):99–106
Google Scholar
Zimmermann G (1986) The ‘‘Galleria bait method’’ for detection of entomopathogenic fungi in soil. Z Fuer Angew Entomol 102:213–215
Google Scholar
Zimmermann G (2007a) Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocont Sci Technol 17(6):553–596. https://doi.org/10.1080/09583150701309006
Article
Google Scholar
Zimmermann G (2007b) Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocont Sci Technol 17(9):879–920. https://doi.org/10.1080/09583150701593963
Article
Google Scholar