Acharya R, Hwang HS, Mostafiz MM, Yu YS, Lee KY (2020) Susceptibility of various developmental stages of the fall armyworm, Spodoptera frugiperda, to Entomopathogenic nematodes. Insects 11:868
Article
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410
Article
CAS
Google Scholar
Andalo V, Santos V, Moreira GF, Moreira CC, Junior AM (2010) Evaluation of entomopathogenic nematodes under laboratory and greenhouses conditions for the control of Spodoptera frugiperda. Cienc Rural 40:1860–1866
Article
Google Scholar
Aryal S, Nielsen UN, Sumaya NH, Wilson C, Riegler M (2022) Virulence, penetration rate and reproductive potential of entomopathogenic nematodes from eastern Australia in Queensland fruit fly. Bactrocera Tryoni Biol Control 169:104871
Article
CAS
Google Scholar
Ashwini MN, Bhaskar H, Mathew D, Shylaja MR, Girija D (2022) Isolation and evaluation of bacteria associated with entomopathogenic nematode Heterorhabditis spp. against the spider mite, Tetranychus truncatus Ehara (Acari: Tetranychidae). Egypt J Biol Pest Control 32:87
Article
Google Scholar
Baudron F, Zaman-Allah MA, Chaipa I, Chari N, Chinwada P (2019) Understanding the factors influencing fall armyworm (Spodoptera frugiperda J.E. Smith) damage in African smallholder maize fields and quantifying its impact on yield a case study in Eastern Zimbabwe. Crop Prot 120:141–150
Article
Google Scholar
Bedding RA, Akhurst RJ (1975) A simple technique for the detection of insect parasitic nematodes in soil. Nematologica 21:109–110
Article
Google Scholar
Blanco-Pérez R, Bueno-Pallero FÁ, Neto L, Campos-Herrera R (2017) Reproductive efficiency of entomopathogenic nematodes as scavengers. Are they able to fight for insect’s cadavers. J Invertebr Pathol 148:1–9
Article
Google Scholar
CABI (2022) Spodoptera frugiperda (fall armyworm). Invasive species compendium. https://www.cabi.org/isc/datasheet/29810
Chavan SN, Somasekhar N, Thorat YE, Thube SH, Mhatre PH (2019) Entomopathogenic nematodes: a green strategy for management of insect pests of crops. In: Ghoneim K (ed) Advances in agricultural entomology, vol IV. AkiNik Publications, New Delhi, pp 127–157
Google Scholar
De Faria MR, Wraight SP (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43(3):237–256. https://doi.org/10.1016/j.biocontrol.2007.08.001
Article
CAS
Google Scholar
Finney DJ (1971) Probit analysis, 3rd edn. Cambridge University, UK
Google Scholar
Garcia LC, Raetano CG, Leite LG (2008) Application technology for the entomopathogenic nematodes Heterorhabditis indica and Steinernema sp. (Rhabditida: Heterorhabditidae and Steinernematidae) to control Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) in corn. Neotrop Entomol 37:305–311
Article
Google Scholar
Gokte-Narkhedkar N, Bhanare K, Nawkarkar P, Chilliveri P, Fand BB, Kranthi S (2019) Parasitic potential of entomopathogenic nematode Heterorhabditis indica against two lepidopteran insect pests of cotton, Helicoverpa armigera (Hubner) and Spodoptera litura (Fabricious). Phytoparasitica 47:31–41
Article
Google Scholar
Gutiérrez-Moreno R, Mota-Sanchez D, Blanco CA, Whalon ME, Terán-Santofimio H, Rodriguez-Maciel JC, DiFonzo C (2019) Field-evolved resistance of the fall armyworm (Lepidoptera: Noctuidae) to synthetic insecticides in Puerto Rico and Mexico. J Econ Entomol 112:792–802
Article
Google Scholar
Hoy CW, Grewal PS, Lawrence JL, Jagdale G, Acosta N (2008) Canonical correspondence analysis demonstrates unique soil conditions for entomopathogenic nematode species compared with other free-living nematode species. Biol Control 46:371–379. https://doi.org/10.1016/j.biocontrol.2008.06.001
Article
CAS
Google Scholar
Ibrahim SAM, Salem HHA, Taha MA (2019) Dual application of entomopathogenic nematodes and fungi on immune and antioxidant enzymes of the greater wax moth, Galleria mellonella L. Egypt J Biol Pest Control 29:20. https://doi.org/10.1186/s41938-019-0125-9
Article
Google Scholar
Javed S, KhanumTA AA (2022) Storage and efficacy of entomopathogenic nematode species as a biocontrol agent against the armyworm, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Egypt J Biol Pest Control 32:6. https://doi.org/10.1186/s41938-022-00505-x
Article
Google Scholar
Joshi PK, Singh NP, Singh NN, Gerpacio RV, Pingali PL (2005) Maize in India: production systems, constraints, and research priorities. CIMMYT, Mexico
Google Scholar
Kaya HK, Gaugler R (1993) Entomopathogenic nematodes. Annu Rev Entomol 38:181–206
Article
Google Scholar
Khashaba EHK, Moghaieb REA, Abd El Azim AM, Ibrahim SAM (2020) Isolation, identification of entomopathogenic nematodes, and preliminary study of their virulence against the great wax moth, Galleria mellonella L. (Lepidoptera: Pyralidae). Egypt J Biol Pest Control 30:55. https://doi.org/10.1186/s41938-020-00257-6
Article
Google Scholar
Kumar KK, George A, Behere GT, Thorat YE, Ingle D, Sinh DP (2022) Pathogenicity of Heterorhabditis indica against developmental stages of Eudocima materna L. (Lepidoptera, Erebidae). Egypt J Biol Pest Control 32:65. https://doi.org/10.1186/s41938-022-00563-1
Article
Google Scholar
Laznik Ž, Znidarcic D, Trdan S (2011) Control of Trialeurodes vaporariorum (Westwood) adults on glasshouse-grown cucumbers in four different growth substrates: an efficacy comparison of foliar application of Steinernema feltiae (Filipjev) and spraying with thiamethoxam. Turk J Agric Forestry 35:631–640
CAS
Google Scholar
Metwally HMS, Hafez GA, Hussein MA, Salem HA, Saleh MME (2012) Low cost artificial diet for rearing the greater wax moth, Galleria mellonella L. (Lepidoptera: Pyralidae) as a host for entomopathogenic nematodes. Egypt J Biol Pest Control 22(1):15–17
Google Scholar
Molina-Ochoa J, Lezama-Gutierrez R, Gonzalez-Ramirez M, Lopez-Edwards M, Rodriguez-Vega MA, Arceo-Palacios F (2003) Pathogens and parasitic nematodes associated with populations of fall armyworm (Lepidoptera: Noctuidae) larvae in Mexico. Fla Entomol 86(3):244–253
Article
Google Scholar
Montezano DG, Specht A, Sosa-Gómez DR, Roque-Specht VF, Sousa-Silva JC, Paula-Moraes SV, Peterson JA, Hunt TE (2018) Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr Entomol 26:286–300
Article
Google Scholar
Nguyen KB, Hunt DJ (2007) Entomopathogenic nematodes: systematics, phylogeny and bacterial symbionts. Leiden, The Netherlands. https://doi.org/10.1163/ej.9789004152939.i-816
Book
Google Scholar
Nguyen KB, Smart GC Jr (1995) Morphometrics of infective juveniles of Steinernema spp. and Heterorhabditis bacteriophora (Nemata: Rhabditida). J Nematol 27:206–212
CAS
Google Scholar
Nikdel M, Niknam G (2015) Morphological and molecular characterization of a new isolate of entomopathogenic nematode, Steinernema feltiae (Filipjev) (Rhabditida: Steinernematidae) from the Arasbaran forests. Iran J Asia Pacifc Biodivers 8:144–151
Article
Google Scholar
Park SH, Yu YS, Park JS, Choo HY, Do Bae S, Nam MH (2001) Biological control of tobacco cutworm, Spodoptera litura fabricius with entomopathogenic nematodes. Biotechnol Bioprocess Eng 6:139–143
Article
CAS
Google Scholar
Patil J, Varshney R, Rangeshwaran R, Ramanujam B, Suby SB (2020) Management of fall army- worm through biopesticides, in highlighted extension achievement of fall armyworm awareness campaign in North East Indian Hills. In: Ansari MA, Jat SL, Saha S, Babu S, Yadav GS, Das A, Baishya LK, Singh R, Tasung A, Sharma SK, Bomit L, Suby SB, Sekhar JC, Prakash N, Rakshit S (eds) ICAR research complex for NEH region, Meghalaya. India and Indian Institute of Maize Research, PAU campus, Ludhiana, pp 12–20
Google Scholar
Patil J, Subaharan K, Omprakash N, Bakthavatsalam N, Mhatre PH, Sekhar JC (2022) Biocontrol potential of entomopathogenic nematodes for the sustainable management of Spodoptera frugiperda (Lepidoptera: Noctuidae) in maize. Pest Manag Sci. https://doi.org/10.1002/ps.6912
Article
Google Scholar
Poinar GO, Karunakar GK, David H (1992) Heterorhabditis indicus n. spp. (Rhabditida: Nematode) from India: Separation of Heterorhabditis spp. by infective juveniles. Fundam Appl Nematol 15:467–472
Google Scholar
Prasanna BM, Huesing JE, Eddy R, Peschke VM (2018) Fall armyworm in Africa: a guide for integrated pest management, 1st edn. CIMMYT, Mexico
Google Scholar
Radhakrishnan S, Shanmugam S (2017) Bioefficacy of entomopathogenic nematodes against Spodoptera litura (Lepidoptera: Noctuidae) in Bhendi. Int J Curr Microbiol Appl Sci 6:2314–2319
Article
CAS
Google Scholar
Seinhorst JW (1959) A rapid method for the transfer of nematodes from fixative to anhydrous glycerin. Nematologica 4:67–69
Article
Google Scholar
Sharanabasappa K, Kalleshwaraswamy CM, Maruthi MS, Pavithra HB (2018) Biology of invasive fall armyworm Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) on maize. Indian J Entomol 80(3):540–543. https://doi.org/10.5958/0974-8172.2018.00238.9
Article
Google Scholar
Shukla GN, Kumar A, Jha A, Singh N, Sharma P, Singh J, Ruchira, Koli S, Rohan P, Mishra A (2018) Maize Vision 2022: a knowledge report. Federation of Indian Chambers of Commerce and Industry (FICCI) PricewaterhouseCoopers Private Limited (PwC): p 86
Smits PH, Groenen JTM, De Raay G (1991) Characterization of Heterorhabditis isolates using DNA restriction fragment length polymorphism. Revue De Nématologie 14(3):445–453
Google Scholar
Sobhy HM, Abdel-Bary NA, Harras FA, Faragalla FH, Husseinen HI (2020) Efficacy of entomopathogenic nematodes against Spodoptera littoralis (Boisd.) and Agrotis ipsilon (H.) (Lepidoptera: Noctuidae). Egypt J Biol Pest Control 30:73. https://doi.org/10.1186/s41938-020-00265-6
Article
Google Scholar
Tamura K, Stecher G, Kumar S (2021) MEGA 11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38(7):3022–3027. https://doi.org/10.1093/molbev/msab120
Article
CAS
Google Scholar
Thube SH, Pandian RT, Babu M, Josephrajkumar A, Mhatre PH, Kumar PS, Kumar BN, Hegde V, Chavan SN (2022) Evaluation of a native isolate of Metarhizium anisopliae (Metschn.) Sorokin TMBMA1 against tea mosquito bug, Helopeltis theivora infesting cocoa (Theobroma cacao L.). Biol Control 170:104909
Article
Google Scholar
Vrain TC, Wakarchuk DA, Levesque AC, Hamilton RI (1992) Interspecific rDNA restriction fragment length polymorphism in the Xiphinema americanum group. Fundam Appl Nematol 15:563–573
Google Scholar
White GF (1927) A method for obtaining infective nematode larvae from cultures. Science 66:302–303
Article
CAS
Google Scholar