Ahsaei SM, Tabadkani SM, Hosseininaveh V, Allahyari H, Bigham M (2013) Differential accumulation of energy by the colour morphs of the pea aphid Acyrthosiphon pisum (Hemiptera: Aphididae) mirrors their ecological adaptations. Eur J Entomol 110(2):241–245. https://doi.org/10.14411/eje.2013.035
Article
Google Scholar
Allan JD, Flecker AS, McClintock NL (1987) Prey preference of stoneflies: sedentary vs mobile prey. Oikos 49(3):323–331. https://doi.org/10.2307/3565768
Article
Google Scholar
Allen DC, McCluney KE, Elser SR, Sabo JL (2014) Water as a trophic currency in dryland food webs. Front Ecol Environ 12(3):156–160. https://doi.org/10.1890/130160
Article
Google Scholar
Alvarado P, Balta O, Alomar O (1997) Efficiency of four Heteroptera as predators of Aphis gossypii and Macrosiphum euphorbiae (Hom.: Aphididae). Entomophaga 42(1–2):215–226. https://doi.org/10.1007/BF02769899
Article
Google Scholar
Blackman RL, Eastop VF (2000) Aphids on the world’s crops, an identification and information guide, 2nd edn. Wiley, Chichester
Google Scholar
Calixto AM, Bueno VHP, Montes FC, Silva AC, Van Lenteren JC (2013) Effect of different diets on reproduction, longevity and predation capacity of Orius insidiosus (Say) (Hemiptera: Anthocoridae). Biocontrol Sci Technol 23(11):1245–1255. https://doi.org/10.1080/09583157.2013.822850
Article
Google Scholar
Cui SZ (1994) Studies on biological characteristics of Orius minutus and its control of major cotton insect pests. Acta Gossypii Sinica S1:78–83
Google Scholar
Deguines N, Brashares JS, Prugh LR (2017) Precipitation alters interactions in a grassland ecological community. J Anim Ecol 86(2):262–272. https://doi.org/10.1111/1365-2656.12614
Article
PubMed
Google Scholar
Dixon AFG (2000) Insect predator-prey dynamics ladybird beetles and biological control. Cambridge University Press, Cambridge
Google Scholar
El-Muadhidi MA, Makkouk KM, Kumari SG, Jerjess M, Murad SS, Mustafa RR, Tarik F (2001) Survey for legume and cereal viruses in Iraq. Phytopathol Mediterr 40(3):224–233
Google Scholar
Fagan WF, Siemann E, Mitter C, Denno RF, Huberty AF, Woods HA, Elser JJ (2002) Nitrogen in insects: implications for trophic complexity and species diversification. Am Nat 160(6):784–802. https://doi.org/10.1086/343879
Article
PubMed
Google Scholar
Farhoudi F, Allahyari H, Tabadkani SM, Gholizadeh M (2014) Prey preference of Aphidoletes Aphidimyza on Acyrthosiphon Pisum: effect of prey color and size. J Insect Behav 27(6):776–785. https://doi.org/10.1007/s10905-014-9470-4
Article
Google Scholar
Ge Y, Camara I, Wang Y, Liu P, Zhang L, Xing Y, Li A, Shi W (2018) Predation of Aphis craccivora (Hemiptera: Aphididae) by Orius sauteri (Hemiptera: Anthocoridae) under different temperatures. J Econ Entomol 6(111):2599–2604. https://doi.org/10.1093/jee/toy255
Article
Google Scholar
Guo F, Bunn SE, Brett MT, Fry B, Hager H, Ouyang X, Kainz MJ (2018) Feeding strategies for the acquisition of high-quality food sources in stream macroinvertebrates: collecting, integrating, and mixed feeding. Limnol Oceanogr 63(5):1964–1978. https://doi.org/10.1002/lno.10818
Article
PubMed
PubMed Central
Google Scholar
Hawkes JR, Jones RAC (2005) Incidence and distribution of barley yellow dwarf virus and cereal yellow dwarf virus in over summering grasses in a Mediterranean-type environment. Aust J Agric Res 56(3):257–270. https://doi.org/10.1071/AR04259
Article
Google Scholar
Huang JH, Lee HJ (2011) RNA interference unveils functions of the hypertrehalosemic hormone on cyclic fluctuation of hemolymph trehalose and oviposition in the virgin female Blattella germanica. J Insect Physiol 57(7):858–864. https://doi.org/10.1016/j.jinsphys.2011.03.012
Article
CAS
PubMed
Google Scholar
Jarosova J, Chrpova J, Sip V, Kundu JK (2013) A comparative study of the Barley yellow dwarf virus species PAV and PAS: distribution, accumulation and host resistance. Plant Pathol 62(2):436–443. https://doi.org/10.1111/j.1365-3059.2012.02644.x
Article
CAS
Google Scholar
Klecka J, Boukal DS (2012) Who eats whom in a pool? PLoS ONE, A comparative study of prey selectivity by predatory aquatic insects. https://doi.org/10.1371/journal.pone.0037741
Book
Google Scholar
Kohl KD, Coogan SC, Raubenheimer D (2015) Do wild carnivores forage for prey or for nutrients? Evidence for nutrient-specific foraging in vertebrate predators. BioEssays 37(6):701–709. https://doi.org/10.1002/bies.201400171
Article
PubMed
Google Scholar
Krueger EN, Beckett RJ, Gray SM, Miller WA (2013) The complete nucleotide sequence of the genome of barley yellow dwarf virus-RMV reveals it to be a new polerovirus distantly related to other yellow dwarf viruses. Front Microbiol 4:205. https://doi.org/10.3389/fmicb.2013.00205
Article
CAS
PubMed
PubMed Central
Google Scholar
Lang A, Gsodl S (2003) “Superfluous killing” of aphids: a potentially beneficial behaviour of the predator Poecilus cupreus (L.) (Coleoptera: Carabidae)? J Plant Dis Prot 110(6):583–590
Google Scholar
Li DQ, Jackson RR (1997) Influence of diet on survivorship and growth in Portia fimbriata, an Araneophagic jumping spider (Araneae: Salticidae). Can J Zool Rev Can Zool 75(10):1652–1658. https://doi.org/10.1139/z97-792
Article
Google Scholar
Li Y, Wang SS, Liu YK, Lu YT, Zhou M, Wang S, Wang SG (2020) The effect of different dietary sugars on the development and fecundity of Harmonia axyridis. Front Physiol. https://doi.org/10.3389/fphys.2020.574851
Article
PubMed
PubMed Central
Google Scholar
Liu WJ, Zhang AS, Men XY, Zhou XH, Li LL, Zhang SC, Yu Y, Xu HF (2011a) Effect of two different preys on predation of Orius sauteri (Heteroptera: Anthocoridae). Chin J Biol Control 27(3):302–307
CAS
Google Scholar
Liu WJ, Zhang AS, Li LL, Men XY, Zhang SC, Zhou XH, Yu Y, Xu HF (2011b) Effect of two live diets on the development and reproduction of Orius sauteri (Heteroptera: Anthocoridae). Chin J Appl Entomol 48(3):566–568
Google Scholar
Lu K, Wang Y, Chen X, Zhang XY, Li WR, Cheng YB, Li Y, Zhou JM, You KK, Song YY, Zhou Q, Zeng RS (2019) Adipokinetic hormone receptor mediates trehalose homeostasis to promote vitellogenin uptake by oocytes in Nilaparvata lugens. Front Physiol 9:1904. https://doi.org/10.3389/fphys.2018.01904
Article
PubMed
PubMed Central
Google Scholar
Mayntz D, Raubenheimer D, Salomon M, Toft S, Simpson SJ (2005) Nutrient-specific foraging in invertebrate predators. Science 307(5706):111–113. https://doi.org/10.1126/science.1105493
Article
CAS
PubMed
Google Scholar
Mayntz D, Toft S (2001) Nutrient composition of the prey’s diet affects growth and survivorship of a generalist predator. Oecologia 127(2):207–213. https://doi.org/10.1007/s004420000591
Article
PubMed
Google Scholar
Maupin JL, Riechert SE (2001) Superfluous killing in spiders: A consequence of adaptation to food-limited environments? Behav Ecol 12(5):569–576. https://doi.org/10.1093/beheco/12.5.569
Article
Google Scholar
McCluney KE, Sabo JL (2009) Water availability directly determines per capita consumption at two trophic levels. Ecology 90(6):1463–1469. https://doi.org/10.1890/08-1626.1
Article
PubMed
Google Scholar
McCluney KE, Sabo JL (2016) Animal water balance drives top-down effects in a riparian forest-implications for terrestrial trophic cascades. Proc R Soc B-Biol Sci 283(1836):1–8. https://doi.org/10.1098/rspb.2016.0881
Article
Google Scholar
McCluney KE (2017) Implications of animal water balance for terrestrial food webs. Curr Opin Insect Sci 23:13–21. https://doi.org/10.1016/j.cois.2017.06.007
Article
PubMed
Google Scholar
Muller-Navarra DC (2008) Food web paradigms: the biochemical view on trophic interactions. Int Rev Hydrobiol 93(4–5):489–505. https://doi.org/10.1002/iroh.200711046
Article
CAS
Google Scholar
Nagai K, Yano E (2000) Predation by Orius sauteri (Poppius) (Heteroptera: Anthocoridae) on Thrips palmi Karny (Thysanoptera: Thripidae): functional response and selective predation. Appl Entomo Zool 35(4):565–574. https://doi.org/10.1303/aez.2000.565
Article
Google Scholar
Nakamura K (1977) A model for the functional response of a predator to varying prey densities based on the feeding ecology of wolf spiders. Bull Nat Inst Agric Sci 31:29–89
Google Scholar
Nakata T (1995) Population fluctuations of aphids and their natural enemies on potato in Hokkaido. Jpn Appl Entomo Zool 30(1):129–138. https://doi.org/10.1303/aez.30.129
Article
Google Scholar
Obopile M (2006) Economic threshold and injury levels for control of cowpea aphid, Aphis craccivora Linnaeus (Homoptera: Aphididae) on cowpea. Afr Plant Prot 12:111–115
Google Scholar
Power AG, Borer ET, Hosseini P, Mitchell CE, Seabloom EW (2011) The community ecology of barley/cereal yellow dwarf viruses in Western US grasslands. Virus Res 159(2):95–100. https://doi.org/10.1016/j.virusres.2011.05.016
Article
CAS
PubMed
Google Scholar
Pyke GH, Pulliam HR, Charnov EL (1977) Optimal foraging: a selective review of theory and tests. Q Rev Biol 52(2):137–154. https://doi.org/10.1086/409852
Article
Google Scholar
Raubenheimer D, Simpson SJ (2003) Nutrient balancing in grasshoppers: behavioural and physiological correlates of dietary breadth. J Exp Biol 206(10):1669–1681. https://doi.org/10.1242/jeb.00336
Article
CAS
PubMed
Google Scholar
Raubenheimer D, Simpson SJ, Mayntz D (2009) Nutrition, ecology and nutritional ecology: toward an integrated framework. Funct Ecol 23(1):4–16. https://doi.org/10.1111/j.1365-2435.2009.01522.x
Article
Google Scholar
Reitz SR, Funderburk JE, Waring SM (2006) Differential predation by the generalist predator Orius insidiosus on congeneric species of thrips that vary in size and behavior. Entomol Exp Appl 119(3):179–188. https://doi.org/10.1111/j.1570-7458.2006.00408.x
Article
Google Scholar
Schmidt JM, Sebastian P, Wilder SM, Rypstra AL (2012) The nutritional content of prey affects the foraging of a generalist arthropod predator. PLoS ONE 7(11):1–9. https://doi.org/10.1371/journal.pone.0049223
Article
CAS
Google Scholar
Shi SL, Liu XX, Zhang QW, Zhao ZW (2010) Morph-specific differences in metabolism related to flight in the wing-dimorphic Aphis gossypii. Insect Sci 17(6):527–534. https://doi.org/10.1111/j.1744-7917.2010.01332.x
Article
Google Scholar
Sih A, Christensen B (2001) Optimal diet theory: When does it work, and when and why does it fail? Anim Behav 61(2):379–390. https://doi.org/10.1006/anbe.2000.1592
Article
Google Scholar
Simpson SJ, Raubenheimer D (2005) Obesity: the protein leverage hypothesis. Obes Rev 6(2):133–142. https://doi.org/10.1111/j.1467-789X.2005.00178.x
Article
CAS
PubMed
Google Scholar
Simpson SJ, Raubenheimer D (2012) The nature of nutrition: a unifying framework from animal adaptation to human obesity. Princeton University Press, Princeton
Book
Google Scholar
Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton
Google Scholar
Stoetzel M, Miller G (2001) Aerial feeding aphids of corn in the United States with reference to the root-feeding Aphis maidiradicis (Homoptera: Aphididae). Fla Entomol 84(1):83–98. https://doi.org/10.2307/3496667
Article
Google Scholar
Sun XH, Xu XN, Wang ED (2009) The prey preference of Orius sauteri on western flower thrips and two-spotted spider mite. Acta Ecol Sin 29(11):2685–2691
Google Scholar
Tanaka Y, Narita R, Ohno T, Ogiso M (2002) Comparison of numbers of prey consumption and fertility about predatory bugs, Orius spp. Res Bull Aichi-Ken Agric Res Center 34:99–104
Google Scholar
Van Handel E (1969) Do trehalose and trehalase function in renal glucose transport? Science (new York, NY) 163(3871):1075–1076. https://doi.org/10.1126/science.163.3871.1075
Article
Google Scholar
Van Handel E (1985a) Rapid determination of glycogen and sugars in mosquitoes. J Am Mosq Control Assoc 1(3):299–301
PubMed
Google Scholar
Van Handel E (1985b) Rapid determination of total lipid in mosquitoes. J Am Mosq Control Assoc 1(3):302–304
PubMed
Google Scholar
Van Handel E, Day JF (1988) Assay of lipids, glycogen and sugars in individual mosquitos - correlations with wing length in field-collected Aedes vexans. J Am Mosq Control Assoc 4(4):549–550
PubMed
Google Scholar
Waldbauer G, Friedman S (1991) Self-selection of optimal diets by insects. Annu Rev Entomol 36(1):43–63. https://doi.org/10.1146/annurev.en.36.010191.000355
Article
Google Scholar
Wang HL, Qin XF, Yu H, Wang GC (2013) Predation of Orius sauteri on MEAM1 Bemisia tabaci Pseudopupae. J Ecol Rural Environ 29(1):132–135
Google Scholar
Wang S, Michaud JP, Tan XL, Zhang F (2014) Comparative suitability of aphids, thrips and mites as prey for the flower bug Orius sauteri (Hemiptera: Anthocoridae). Eur J Entomol 111(2):221–226. https://doi.org/10.14411/eje.2014.031
Article
Google Scholar
Whelan CJ, Schmidt KA (2007) Food acquisition, processing, and digestion. In: Stephens DW, Brown JS, Yden RC (eds) Foraging: behavior and ecology. The University of Chicago Press, Chicago, pp 141–172
Google Scholar
Wilder SM, Norris M, Lee RW, Raubenheimer D, Jordan SSJ, F, (2013) Arthropod food webs become increasingly lipid limited at higher trophic levels. Ecol Lett 16(7):895–902. https://doi.org/10.1111/ele.12116
Article
PubMed
Google Scholar
Wong SC, Oksanen A, Mattila ALK, Lehtonen R, Niitepold K, Hanski I (2016) Effects of ambient and preceding temperatures and metabolic genes on flight metabolism in the Glanville fritillary butterfly. J Insect Physiol 85:23–31. https://doi.org/10.1016/j.jinsphys.2015.11.015
Article
CAS
PubMed
PubMed Central
Google Scholar
Yano E (1996) Biology of Orius sauteri (Poppius) and its potential as a biocontrol agent for Thrips palmi Karny. Bulletin OILB/SROP 19(1):203–206. In: Proceedings of the meeting Integrated control in glasshouses, Vienna, Austria, 20–25 May 1996
Yano E, Jiang NQ, Hemerik L, Mochizuki M, Mitsunaga T, Shimoda T (2005) Time allocation of Orius sauteri in attacking Thrips palmi on eggplant leaf. Entomol Exp Appl 117(3):177–184. https://doi.org/10.1111/j.1570-7458.2005.00347.x
Article
Google Scholar
Zhang Y, Zhao MC, Cheng J, Liu S, Yuan HB (2020) Population dynamics and species composition of maize field parasitoids attacking aphids in northeastern China. PLoS ONE. https://doi.org/10.1371/journal.pone.0241530
Article
PubMed
PubMed Central
Google Scholar
Zhou GL, Flowers M, Friedrich K, Horton J, Pennington J, Wells MA (2004) Metabolic fate of [14C]-labeled meal protein amino acids in Aedes aegypti mosquitoes. J Insect Physiol 50(4):337–349. https://doi.org/10.1016/j.jinsphys.2004.02.003
Article
CAS
PubMed
Google Scholar
Zou WH (2004) The laboratory rearing and predatory capacity of the predatory bug, Orius sauteri (Poppius) (Heteroptera:Anthocoridae). Dissertation. Huazhong Agricultural University.