Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ - Sci 26:1–20. https://doi.org/10.1016/j.jksus.2013.05.001
Article
Google Scholar
Ahmed GA (2010) Controlling of Fusarium wilt of cucumber by antagonistic bacteria. J Life Sci 4:16–21
Google Scholar
Al-Tuwaijri MMY (2015) Studies on Fusarium wilt disease of cucumber. J Appl Pharm Sci 5:110–119. https://doi.org/10.7324/JAPS.2015.50216
Article
Google Scholar
Bapiri A, Asgharzadesh A, Mujallali H, Khavazi K, Pazira E (2012) Evaluation of zinc solubilization potential by different strains of fluorescent pseudomonads. J Appl Sci Environ Manag 16:295–298
CAS
Google Scholar
Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051. https://doi.org/10.1590/S1415-47572012000600020
Article
CAS
PubMed
PubMed Central
Google Scholar
Benson HJ (2002) Microbiological applications: laboratory manual in general microbiology, 8th edn. McGraw Hill, New York
Google Scholar
Bric JM, Bostock RM, Silverstonet SE (1991) Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulase membrane. Appl Environ Microbiol 57:535–538
CAS
PubMed
PubMed Central
Google Scholar
Costin S, Ionut S (2017) ABIS online - Advanced Bacterial Identification Software, an original tool for phenotypic bacterial identification, Regnum Prokaryotae. Available at: www.tgw1916.net, Accessed on 12 Dec 2017
De Bruijn I, Raaijmakers JM (2009) Regulation of cyclic lipopeptide biosynthesis in Pseudomonas fluorescens by the ClpP protease. J Bacteriol 191:1910–1923. https://doi.org/10.1128/JB.01558-08
Article
CAS
PubMed
Google Scholar
Deb P, Talukdar SA, Mohsina K, Sarker PK, Sayem SMA (2013) Production and partial characterization of extracellular amylase enzyme from Bacillus amyloliquefaciens P-001. Springerplus 2:154. https://doi.org/10.1186/2193-1801-2-154
Article
CAS
PubMed
PubMed Central
Google Scholar
Dharni S, Alam M, Kalani K, Khaliq A, Samad A, Srivastava SK, Patra DD (2012) Production, purification, and characterization of antifungal metabolite from Pseudomonas aeruginosa SD12, a new strain obtained from tannery waste polluted soil. J Microbiol Biotechnol 22:674–683
Article
CAS
PubMed
Google Scholar
Fatima S, Anjum T (2017) Identification of a potential ISR determinant from Pseudomonas aeruginosa PM12 against Fusarium wilt in tomato. Front Plant Sci 8:1–14. https://doi.org/10.3389/fpls.2017.00848
Article
Google Scholar
Fridlender M, Inbar J, Chet I (1993) Biological control of soilborne plant pathogens by a β-1,3 glucanase-producing Pseudomonas cepacia. Soil Biol Biochem 25:1211–1221. https://doi.org/10.1016/0038-0717(93)90217-Y
Article
CAS
Google Scholar
Gordon SA, Weber RP (1951) Colorimetric estimation of indoleacetic acid. Plant Physiol 26:192–195
Article
CAS
PubMed
PubMed Central
Google Scholar
Han J, Shim H, Shin J, Kim KS (2015) Antagonistic activities of Bacillus spp. strains isolated from tidal flat sediment towards anthracnose pathogens Colletotrichum acutatum and C. gloeosporioides in South Korea. Plant Pathol J 31:165–175
Article
PubMed
PubMed Central
Google Scholar
He F (2011) E. coli genomic DNA extraction. Bio-Protocol Bio101:e97. https://doi.org/10.21769/BioProtoc.97
Hu W, Gao Q, Hamada MS, Dawood DH, Zheng J, Chen Y, Ma Z (2014) Potential of Pseudomonas chlororaphis subsp. aurantiaca strain Pcho10 as a biocontrol agent against Fusarium graminearum. Phytopathology 104:1289–1297. https://doi.org/10.1094/PHYTO-02-14-0049-R
Article
CAS
PubMed
Google Scholar
Islam MR, Jeong YT, Lee YS, Song CH (2012) Isolation and identification of antifungal compounds from Bacillus subtilis C9 inhibiting the growth of plant pathogenic fungi. Micobiology 40:59–65
Article
CAS
Google Scholar
Islam MT, Deora A, Hashidoko Y, Rahman A, Ito T, Tahara S (2007) Isolation and identification of potential phosphate solubilizing bacteria from the rhizoplane of Oryza sativa L. cv. BR29 of Bangladesh. Zeitschrift fur Naturforsch - Sect C J Biosci 62:103–110
Article
CAS
Google Scholar
Ji SH, Gururani MA, Chun SC (2014) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res 169:83–98. https://doi.org/10.1016/j.micres.2013.06.003
Article
CAS
PubMed
Google Scholar
Ji SN, Paul NC, Deng JX, Kim YS, Yun B, Yu SH (2013) Biocontrol activity of Bacillus amyloliquefaciens CNU114001 against fungal plant diseases. Mycobiology 41:234–242
Article
PubMed
PubMed Central
Google Scholar
Kandel SL, Firrincieli A, Joubert PM, Okubara PA, Leston ND, McGeorge KM, Mugnozza GS, Harfouche A, Kim SH, Doty SL (2017) An in vitro study of bio-control and plant growth promotion potential of salicaceae endophytes. Front Microbiol 8:386. https://doi.org/10.3389/fmicb.2017.00386
Article
PubMed
PubMed Central
Google Scholar
Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A (2008) A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr Microbiol 57:503–507. https://doi.org/10.1007/s00284-008-9276-8
Article
CAS
PubMed
Google Scholar
Koser SA (1923) Utilization of the salts of organic acids by the colon-aerogenes group. J Bacteriol 8:493–520
CAS
PubMed
PubMed Central
Google Scholar
Kumar NR, Arasu VT, Gunasekaran P (2002) Genotyping of antifungal compounds producing plant growth-promoting rhizobacteria, Pseudomonas fluorescens. Curr Sci 82:1463–1466
CAS
Google Scholar
Kumar P, Dubey RC, Maheshwari DK (2012) Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol Res 167:493–499. https://doi.org/10.1016/j.micres.2012.05.002
Article
CAS
PubMed
Google Scholar
Kumar RS, Ayyandurai N, Pandiaraja P, Reddy AV, Venkateswarlu Y, Prakash O, Sakthivel N (2005) Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad-spectrum antifungal activity and biofertilizing traits. J Appl Microbiol 98:145–154. https://doi.org/10.1111/j.1365-2672.2004.02435.x
Article
CAS
PubMed
Google Scholar
Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee T, Park D, Kim K, Lim SM, Yu NH, Kim S, Kim HY, Jung KS, Jang JY, Park JC, Ham H, Lee S, Hong SK, Kim JC (2017) Characterization of Bacillus amyloliquefaciens DA12 showing potent antifungal activity against mycotoxigenic Fusarium species. Plant Pathol J 33:499–507. https://doi.org/10.5423/PPJ.FT.06.2017.0126
Article
PubMed
PubMed Central
Google Scholar
Li Q, Jiang Y, Ning P, Zheng L, Huang J, Li G, Jiang D, Hsiang T (2011) Suppression of Magnaporthe oryzae by culture filtrates of Streptomyces globisporus JK-1. Biol Control 58:139–148. https://doi.org/10.1016/j.biocontrol.2011.04.013
Article
CAS
Google Scholar
Liu P (1952) Utilization of carbohydrates by Pseudomonas aeruginosa. J Bacteriol 64(541):773–781
CAS
PubMed
PubMed Central
Google Scholar
Lopez-Berges MS, Capilla J, Turra D, Schafferer L, Matthijs S, Jochl C, Cornelis P, Guarro J, Haas H, Di Pietro A (2012) HapX-mediated iron homeostasis is essential for rhizosphere competence and virulence of the soilborne pathogen Fusarium oxysporum. Plant Cell 24:3805–3822. https://doi.org/10.1105/tpc.112.098624
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu D, Ma Z, Xu X, Yu X (2016) Isolation and identification of biocontrol agent Streptomyces rimosus M527 against Fusarium oxysporum f. sp. cucumerinum. J Basic Microbiol 56:929–933. https://doi.org/10.1002/jobm.201500666
Article
CAS
PubMed
Google Scholar
Mannaa M, Oh JY, Kim KD (2017) Biocontrol activity of volatile-producing Bacillus megaterium and Pseudomonas protegens against Aspergillus flavus and aflatoxin production on stored rice grains. Micobiology 45:213–219
Article
Google Scholar
Mehnaz S, Saleem RSZ, Yameen B, Pianet I, Schnakenburg G, Pietraszkiewicz H, Valeriote F, Josten M, Sahl HG, Franzblau SG, Harald G (2013) Lahorenoic acids A-C, ortho-dialkyl-substituted aromatic acids from the biocontrol strain Pseudomonas aurantiaca PB-St2. J Nat Prod 76:135–141. https://doi.org/10.1021/np3005166
Article
CAS
PubMed
Google Scholar
Michelsen CF, Watrous J, Glaring MA, Kersten R, Koyama N, Dorrestein PC (2015) Nonribosomal peptides, key biocontrol components for Pseudomonas fluorescens In5, isolated from a Greenlandic suppressive soil. MBio 6:e00079–e00015. https://doi.org/10.1128/mBio.00079-15
Article
CAS
PubMed
PubMed Central
Google Scholar
Paul D, Sinha SN (2017) Isolation and characterization of phosphate solubilizing bacterium Pseudomonas aeruginosa KUPSB12 with antibacterial potential from river Ganga, India. Ann Agrar Sci 15:130–136. https://doi.org/10.1016/j.aasci.2016.10.001
Article
Google Scholar
Priyanka AT, Kotasthane AS, Kosharia A, Kushwah R, Zaidi NW, Singh US (2017) Crop specific plant growth promoting effects of ACCd enzyme and siderophore producing and cynogenic fluorescent Pseudomonas. 3 Biotech 7(1):27. https://doi.org/10.1007/s13205-017-0602-3
Article
CAS
PubMed
PubMed Central
Google Scholar
Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361. https://doi.org/10.1007/s11104-008-9568-6
Article
CAS
Google Scholar
Ramette A, Frapolli M, Défago G, Moënne-Loccoz Y (2003) Phylogeny of HCN synthase-encoding hcnBC genes in biocontrol fluorescent pseudomonads and its relationship with host plant species and HCN synthesis ability. Mol Plant-Microbe Interact 16:525–535. https://doi.org/10.1094/MPMI.2003.16.6.525
Article
CAS
PubMed
Google Scholar
Raza W, Ling N, Liu D, Wei Z, Huang Q, Shen Q (2016) Volatile organic compounds produced by Pseudomonas fluorescens WR-1 restrict the growth and virulence traits of Ralstonia solanacearum. Microbiol Res 192:103–113. https://doi.org/10.1016/j.micres.2016.05.014
Article
CAS
PubMed
Google Scholar
Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
CAS
PubMed
Google Scholar
Solanki MK, Singh RK, Srivastava S, Kumar S, Kashyap PL, Srivastava AK, Arora DK (2014) Isolation and characterization of siderophore producing antagonistic rhizobacteria against Rhizoctonia solani. J Basic Microbiol 54:585–596. https://doi.org/10.1002/jobm.201200564
Article
CAS
PubMed
Google Scholar
Solans M, Scervino JM, Messuti MI, Vobis G, Wall LG (2016) Potential biocontrol actinobacteria: rhizospheric isolates from the argentine pampas lowlands legumes. J Basic Microbiol 56:1–10. https://doi.org/10.1002/jobm.201600323
Article
CAS
Google Scholar
Stanier RY, Palleroni NJ, Doudoroff M (1966) The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43:159–271. https://doi.org/10.1099/00221287-43-2-159
Article
CAS
PubMed
Google Scholar
Sulochana MB, Jayachandra SY, Kumar SKA, Dayanand A (2014) Antifungal attributes of siderophore produced by the Pseudomonas aeruginosa JAS-25. J Basic Microbiol 54:418–424. https://doi.org/10.1002/jobm.201200770
Article
CAS
PubMed
Google Scholar
Tian F, Ding Y, Zhu H, Yao L, Du B (2009) Genetic diversity of siderophore-producing bacteria of tobacco rhizosphere. Brazilian J Microbiol 40:276–284
Article
Google Scholar
Trivedi P, Pandey A, Palni LMS (2008) In vitro evaluation of antagonistic properties of Pseudomonas corrugata. Microbiol Res 163:329–336. https://doi.org/10.1016/j.micres.2006.06.007
Article
PubMed
Google Scholar
Wu DQ, Ye J, Ou HY, Wei X, Huang X, He YW, Xu Y (2011) Genomic analysis and temperature-dependent transcriptome profiles of the rhizosphere originating strain Pseudomonas aeruginosa M18. BMC Genomics 12:1–17. https://doi.org/10.1186/1471-2164-12-438
Article
CAS
Google Scholar
Yang Q-Y, Jia K, Geng W-Y, Guo R-J, Li S-D (2014) Management of cucumber wilt disease by B. subtilis B006 through suppression of F. oxysporum in rhizosphere. Plant Pathol J 13:160–166. https://doi.org/10.3923/ppj.2014.160.166
Article
CAS
Google Scholar
Yeole RD, Dave BP, Dube HC (2001) Siderophore production by fluorescent pseudomonads colonizing roots of certain crop plants. Indian J Exp Biol 39:464–468
CAS
PubMed
Google Scholar
Yu SM, Lee YH (2015) Genes involved in nutrient competition by Pseudomonas putida JBC17 to suppress green mold in postharvest satsuma mandarin. J Basic Microbiol 55:898–906. https://doi.org/10.1002/jobm.201400792
Article
CAS
PubMed
Google Scholar
Zhang Q, Ji Y, Xiao Q, Chng S, Tong Y, Chen X, Liu F (2016) Role of Vfr in the regulation of antifungal compound production by Pseudomonas fluorescens FD6. Microbiol Res 188–189:106–112. https://doi.org/10.1016/j.micres.2016.04.013
Article
CAS
PubMed
Google Scholar
Zhou T, Chen D, Li C, Sun Q, Li L, Liu F, Shen Q, Shen B (2012) Isolation and characterization of Pseudomonas brassicacearum J12 as an antagonist against Ralstonia solanacearum and identification of its antimicrobial components. Microbiol Res 167:388–394. https://doi.org/10.1016/j.micres.2012.01.003
Article
CAS
PubMed
Google Scholar