Cultivation and preparation of lactic acid bacteria for microencapsulation
Five LAB strains of local isolates, extracted from honeybee worker guts, were used in this study. They were previously identified by 16S rRNA partial gene sequencing and deposited at NCBI GenBank under the accession numbers Lactobacillus plantarum MK780211, L. plantarum MK780215, L. kunkeei MK780216, L. kunkeei MK780218 and Lactobacillus sp. MK780212 (Mamoun et al. 2019). These isolates were stored in 11% skimmed milk for further applications (Stoianova and Arkad'eva 2000). Probiotic strains were activated through sub-culturing twice on freshly prepared MRS agar medium (Oxoid, Milan, Italy).
The activated probiotic cultures were cultured on MRS broth and incubated for 15 h at 37 °C under microaerophilic conditions using sodium bicarbonate (El-Gomhouria Company for Drugs, Egypt) and trichloroacetic acid (Oxford, India). Then, they were centrifuged under cooling conditions at 4670 × g for 15 min using cold centrifuge (Centurion Scientific Ltd K3 Series) and washed with NaCl solution (0.85%) (Bio. Chem. for laboratory fine chemicals—Egypt). After collecting the bacterial cells, they were suspended in saline to obtain a solution containing about 10 log CFU g−1 to be used for microencapsulation process. The concentration of microorganisms was adjusted by the bacterial growth curve (Silva et al. 2018).
Preparation of lactic acid bacteria capsules
Microencapsulation process was performed using the extrusion technique, developed by (Mahmoud et al. 2020), with some modifications, where the oriental wasp, Vespa orientalis (Linnaeus) was used as the source of chitosan.
Two different solutions were prepared:
The first solution
Contained 2% sodium alginate (ALG) (Fisher Chem. Alert TM)) and 2% Hi-maize (El Nasr Pharmaceutical Chemicals Company, Egypt) (Mahmoud et al. 2020),
The second solution
Chitosan used in the second solution was extracted locally in our laboratory from Vespa orientalis wasp’s cuticles according to Rady et al. (2018). Calcium chloride (CaCl2) of 0.2 M (El Nasr Pharmaceutical Chemicals Company, Egypt) was added to 0.4% chitosan. The pH was adjusted to 5.8 ± 0.2 with 1 M NaOH (Mahmoud et al. 2020).
Finally, the prepared solutions were autoclaved at 121 °C for 20 min.
Encapsulation process
For the encapsulation of LAB cultures, each strain was mixed with the first solution and then sprayed in the second solution by a medical syringe (3 cm). The particles were kept under stirring for 30 min in the second soln., and then, they were removed using a sterilized sieve (50 µm). The capsules were washed several times with sterile distilled water to remove any debris from the manufacturing components. The moist microparticles were stored in sterile collectors (Mahmoud et al. 2020).
Capsule—size of capsules
The capsules were determined by using both the light microscope and a digital camera for image capture, and the scanning electron microscope. Sample preparation was carried out by immersion of the capsules in glutaraldehyde buffer (0.1 M) for 2 h at 4 °C (pH = 7.3), post-fixation by osmium tetroxide (0.1 M) for 1 h at 4 °C, followed by dehydrating the samples by 30, 50 and 70% ethyl alcohol consecutively for 2 min for each and remained in 100% ethyl alcohol for 30 min at 4 °C (Mahmoud et al. 2020). Finally, the samples were mounted on a piece of adhesive paper and gold coated using a vacuum coater (Sputter Coater, Japan).
Microencapsulation efficiency
The efficiency of the encapsulation process was judged through checking the viability of lactobacilli. It was assessed as described by Chávarri et al. (2010). After incubated under the appropriate conditions, the viable cell number was expressed as colony-forming unit per gram of microcapsule (CFU/gm.).
Encapsulation efficiency (EE) was determined according to Fareez et al. (2015):
$${\text{EE}} = {\text{Log}}_{10 } N/{\text{Log}}_{10 } N_{o} \times 100$$
where N = Number of the bacterial cells loaded inside the microcapsules.
No = Number of the free bacterial cells added to the biopolymer mixture during the preparation of the microcapsules.
Capsule stability
The stability and viability of the double-coated microencapsulated LAB were assessed weekly over a month at freezing and refrigerator temperatures (Mahmoud et al. 2020). Two grams from each one of the double-coated LAB capsules were used in this experiment, where one gram stored at refrigerator temperature (4 ± 2 °C) and the other gram was stored at freezing temperature ( − 18 ± 2 °C).
Encapsulated and free probiotics antimicrobial activity against P. l. larvae spores
Encapsulated and free probiotic cells were cultivated on MRS broth. Each strain was inoculated in a triplicate, and all the inoculated tubes were divided into three groups. These groups (1st, 2nd and 3rd) were incubated for 24, 48 and 72 h, respectively. All the groups were incubated at the appropriate conditions for the probiotic’s growth. After incubation period of each group, the different cultures were centrifuged separately at 4 °C and 4000 rpm for 20 min, using cold centrifuge (Centurion Scientific Ltd K3 Series). The cell-free supernatant (CFS) was recovered and sterilized by filtration through syringe filter 0.22 μm, and then, the pH was adjusted to be around neutral (Barbosa et al. 2016).
The antimicrobial activity was evaluated by agar well-diffusion method according to Mallesha et al. (2010) with little modifications, where J-agar plates were inoculated with 0.5 McFarland suspension from spores of the pathogenic organism P. l. larvae. Then, a central well was made in each plate and filled with 150 μL of the neutralized CFS of each sample separately.
Antimicrobial activity of empty (bacterial free) capsules and its components against P. l. larvae spores
In separated plates, the effect of the capsule components (0.4% acetic acid and 0.4% chitosan dissolved in 0.4% acetic acid) on the pathogenic bacteria was checked through inoculation 150 μL of each component separately in the wells (Ansari et al. 2021). The plates incubated at upright position overnight at 37 °C. Also, the effect of the empty whole capsule on P. l. larvae was determined by growing the bacterial pathogen in the presence of the empty whole capsule in broth medium overnight and then the colony-forming units of the pathogen were determined and compared to the control experiment (overnight broth culture of P. l. larvae). The number of colony-forming units from every bacterial culture was carried out by plate counting to estimate the number of cells that were present based on their ability to give rise to the colonies (viability), where an inoculum of 0.1 mL from 1/10 diluted culture was spread over the surface of agar medium, using a sterile spreader, and after incubation at the appropriate growth conditions, the observed colonies were counted. Finally, the plates were used to calculate the bacterial number through using the formula:
Number of CFU = number of colonies per Petri /inoculum size* dilution of the culture (Harrigan and McCance 2014).
Statistical analysis
All the data are analyzed using IBM-SPSS-26.0 package. Mean and standard deviation (STD) were all calculated by one-way and repeated measurements ANOVA tests. The comparison between samples was done using Tukey test and significance in ANOVA (P < 0.05). All experiments were repeated 3 times.