Amer RA, Ahmed MA, Hatem AE (2012) Effect of gamma irradiation combined with BT biocide treatments on some insect pests in laboratory. Egypt J Agric Res 90(3):1041–1053
Google Scholar
Benedict MQ (2021) Sterile insect technique: lessons from the past. J Med Entomol. https://doi.org/10.1093/jme/tjab024
Article
PubMed
Google Scholar
Bloem S, Carpenter JE, Hofmeyr JH (2003) Radiation biology and inherited sterility in false codling moth (Lepidoptera: Tortricidae). J Econ Entomol 96(6):1724–1731
Article
Google Scholar
Bravo A, Likitvivatanavong S, Gill SS, Soberón M (2011) Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol Biol 41(7):423–431
Article
CAS
Google Scholar
Cagnotti CL, Andorno AV, Hernández CM, Paladino LC, Botto EN, López SN (2016) Inherited sterility in Tuta absoluta (Lepidoptera: Gelechiidae): pest population suppression and potential for combined use with a generalist predator. Fla Entomol 99(sp1):87–94
Article
Google Scholar
Camacho-Millán R, Aguilar-Medina EM, Quezada H, Medina-Contreras Ó, Patiño-López G, Cárdenas-Cota HM, Ramos-Payán R (2017) Characterization of Cry toxins from autochthonous Bacillus thuringiensis isolates from Mexico. Bol Med Hosp Infant Mex 74(3):193–199
PubMed
Google Scholar
Carpenter J, Sheehan W (1996) Compatibility of F 1 sterility and a parasitoid, Cotesia marginiventris (Hymenoptera: Braconidae), for managing Spodoptera exigua (Lepidoptera: Noctuidae): acceptability and suitability of hosts. Fla Entomol 79:289–289
Article
Google Scholar
Carpenter J, Bloem S, Bloem K (2001) Inherited sterility in Cactoblastis cactorum (Lepidoptera: Pyralidae). Fla Entomol 84:537–542
Article
Google Scholar
Connell TD (1981) A new technique for surface sterilization of insect eggs. J Kans Entomol Soc, 124–128.
Dyck VA, Hendrichs J, Robinson AS (2021) Sterile insect technique: principles and practice in area-wide integrated pest management. Taylor & Francis, p 1216
Book
Google Scholar
Eizaguirre M, Tort S, Lopez C, Albajes R (2005) Effects of sublethal concentrations of Bacillus thuringiensis on larval development of Sesamia nonagrioides. J Econ Entomol 98(2):464–470
Article
CAS
Google Scholar
Fathipour Y, Sedaratian A, Bagheri A, Talaei-Hassanlouei R (2019) Increased food utilization indices and decreased proteolytic activity in Helicoverpa armigera larvae fed sublethal Bacillus thuringiensis-treated diet. Physiol Entomol 44(3–4):178–186
Article
CAS
Google Scholar
Gabarty A, El-Sonbaty S, Ibrahim A (2019) Synergistic Effect of Gamma Irradiation and Entomopathogenic Fungus Beauveria bassiana on Antioxidant Isozymes of Spodoptera littoralis (Boisd.)(Lepidoptera; Noctuidae). Entomol News 128(5):433–447
Article
Google Scholar
Gurvich V, Naumova M (2021) Logical contradictions in the one-way ANOVA and Tukey-Kramer multiple comparisons tests with more than two groups of observations. Symmetry 13(8):1387
Article
Google Scholar
Howse P, Armsworth C, Baxter I (2007) Autodissemination of semiochemicals and pesticides: a new concept compatible with the sterile insect technique. In: Area-Wide Control of Insect Pests, Springer. p 275-281
Magholifard Z, Hesami S, Marzban R, Salehi Jouzani G (2020) Individual and combined biological effects of Bacillus thuringiensis and Multicapsid nucleopolyhedrovirus on the biological stages of Egyptian cotton leafworm, Spodoptera littoralis (B.)(Lep.: Noctuidae). J Agric Sci Technol 22(2):465–476
Google Scholar
Marec F, Vreysen MJ (2019) Advances and challenges of using the sterile insect technique for the management of pest lepidoptera. Insects 10(11):371
Article
Google Scholar
Mohan M, Sushil S, Bhatt J, Gujar G, Gupta H (2008) Synergistic interaction between sublethal doses of Bacillus thuringiensis and Campoletis chlorideae in managing Helicoverpa armigera. BioControl 53(2):375–386
Mulé R, Sabella G, Robba L, Manachini B (2017) Systematic review of the effects of chemical insecticides on four common butterfly families. Front Environ Sci 5:32
Article
Google Scholar
Raymond B, Johnston PR, Nielsen-LeRoux C, Lereclus D, Crickmore N (2010) Bacillus thuringiensis: an impotent pathogen? Trends Microbiol 18(5):189–194
Article
CAS
Google Scholar
Salem H, Hussein M, Hafez SE, Sayed R (2020) Hemocytic studies on the synergistic effect of the entomopathogenic nematode species, Steinernema carpocapsae and gamma radiation on the greater wax moth, Galleria mellonella (L.) larvae. Egypt J Biol Pest Control 30(1):1–9
Article
Google Scholar
Sayed WAA-E, El-Helaly AMA (2018) Effect of gamma irradiation on the susceptibility of the cotton leaf worm, Spodoptera littoralis (Boisd.)(Lepidoptera: Noctuidae) to the infection with nucleopolyhedrosis virus. Egypt J Biol Pest Control 28(1):1–4
Article
Google Scholar
Sayed WA, El-Helaly A, Jamal ZA, El-Bendary H (2021) Effect of a low cost diet on the cotton leaf worm, Spodoptera littoralis nucleopolyhedrosis virus pathogenicity and sterile insect technique. Egypt J Biol Pest Control 31(1):1–8. https://doi.org/10.1186/s41938-021-00464-9
Article
Google Scholar
Sedaratian A, Fathipour Y, Talaei-Hassanloui R, Jurat-Fuentes J (2013) Fitness costs of sublethal exposure to Bacillus thuringiensis in Helicoverpa armigera: a carryover study on offspring. J Appl Entomol 137(7):540–549
Article
Google Scholar
Shabbir MZ, He L, Shu C, Yin F, Zhang J, Li Z-Y (2021) Assessing the Single and combined toxicity of chlorantraniliprole and bacillus thuringiensis (GO33A) against four selected strains of plutella xylostella (Lepidoptera: Plutellidae), and a gene expression analysis. Toxins 13(3):227
Article
CAS
Google Scholar
Singh A, Bhardwaj R, Singh IK (2019) Biocontrol agents: potential of biopesticides for integrated pest management. In: Biofertilizers for sustainable agriculture and environment, Springer. p 413-433
Sousa FF, Mendes SM, Santos-Amaya OF, Araujo OG, Oliveira EE, Pereira EJ (2016) Life-history traits of Spodoptera frugiperda populations exposed to low-dose Bt maize. PLoS ONE 11(5):e0156608
Article
CAS
Google Scholar
Suckling D, Conlong D, Carpenter J, Bloem K, Rendon P, Vreysen M (2017) Global range expansion of pest Lepidoptera requires socially acceptable solutions. Biol Invasions 19(4):1107–1119
Article
Google Scholar
Tabashnik BE, Sisterson MS, Ellsworth PC, Dennehy TJ, Antilla L, Liesner L, Whitlow M, Staten RT, Fabrick JA, Unnithan GC (2010) Suppressing resistance to Bt cotton with sterile insect releases. Nat Biotechnol 28(12):1304–1307
Article
CAS
Google Scholar
Tabashnik BE, Liesner LR, Ellsworth PC, Unnithan GC, Fabrick JA, Naranjo SE, Li X, Dennehy TJ, Antilla L, Staten RT (2021) Transgenic cotton and sterile insect releases synergize eradication of pink bollworm a century after it invaded the United States. In: Proceedings of the National Academy of Sciences 118(1).
Walton AJ, Conlong DE (2016) Radiation biology of Eldana saccharina (Lepidoptera: Pyralidae). Fla Entomol 99(sp1):36–42
Article
Google Scholar
Zhu X, Yang Y, Wu Q, Wang S, Xie W, Guo Z, Kang S, Xia J, Zhang Y (2016) Lack of fitness costs and inheritance of resistance to Bacillus thuringiensis Cry1Ac toxin in a near-isogenic strain of Plutella xylostella (Lepidoptera: Plutellidae). Pest Manag Sci 72(2):289–297
Article
CAS
Google Scholar