Andersen M, Magan N, Mead A, Chandler D (2006) Development of a population–based threshold model of conidial germination for analyzing the effects of physiological manipulation on the stress tolerance and infectivity of insect pathogenic fungi. Environ Microb 8:1625–1634. https://doi.org/10.1111/j.1462-2920.2006.01055.x
Article
CAS
Google Scholar
Ayala-Zermeño MA, Gallou A, Berlanga-Padilla AM, Serna-Domínguez MG, Arredondo-Bernal HC, Montesinos-Matías R (2015) Characterization of entomopathogenic fungi used in the biological control programme of Diaphorina citri in Mexico. Biocontrol Sci Technol 25:1192–1207. https://doi.org/10.1080/09583157.2015.1041878
Article
Google Scholar
Bugeme DM, Knapp M, Boga HI, Wanjova AK, Maniania NK (2009) Influence of temperature on virulence of fungal isolates of Metarhizium anisopliae and Beauveria bassiana to the two-spotted spider mite Tetranychus urticae. Mycopathologia 167:221–227. https://doi.org/10.1007/s11046-008-9164-6
Article
PubMed
Google Scholar
Bugeme DM, Knapp M, Boga HI, Ekesi S, Maniania NK (2014a) Susceptibility of developmental stages of Tetranychus urticae (Acari: Tetranychidae) to infection by Beauveria bassiana and Metarhizium anisopliae (Hypocreales: Clavicipitaceae). Inter J Trop Insect Sci 34:190–196. https://doi.org/10.1017/S1742758414000381
Article
Google Scholar
Bugeme DM, Knapp M, Ekesi S, Chabi-Olaye A, Boga HI, Maniania K (2014b) Efficacy of Metarhizium anisopliae in controlling the two-spotted spider mite Tetranychus urticae on common bean in screenhouse and field experiments. Insect Sci 22:121–128. https://doi.org/10.1111/1744-7917.12111
Article
PubMed
Google Scholar
Carolino AT, Paula AR, Silva CP, Butt TM, Samuels RI (2014) Monitoring persistence of the entomopathogenic fungus Metarhizium anisopliae under simulated field conditions with the aim of controlling adult Aedes aegypti (Diptera: Culicidae). Parasit Vectors 7:1–7. https://doi.org/10.1186/1756-3305-7-198
Article
Google Scholar
Castro T, Eilengerg J, Delalibera IJ (2018) Exploring virulence of new and less studied species of Metarhizium spp. from Brazil for two-spotted spider mite control. Exp Appl Acarol 74:139–146. https://doi.org/10.1007/s10493-018-0222-6
Article
PubMed
Google Scholar
Chan-Cupul W, Ruiz-Sánchez E, Cristobal-Alejo J, Pérez-Gutiérrez A, Munguía-Rosales R, Lara-Reyna J (2010) In vitro development of four Paecilomyces fumosoroseus isolates and their pathogenicity on immature whitefly. Agrociencia 44:587–587
Google Scholar
Chandler D, Davidson G, Jacobson RJ (2005) Laboratory and glasshouse evaluation of entomopathogenic fungi against the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae), on tomato, Lycopersicon esculentum. Biocontrol Sci Technol 15:37–54. https://doi.org/10.1080/09583150410001720617
Article
Google Scholar
Dimni S, Maniania NK, Lux SA, Mueke JM (2004) Effect of constant temperatures on germination, radial growth and virulence of Metarhizium anisopliae to three species of African tephritid fruit flies. Biocontrol 49:83–94. https://doi.org/10.1023/B:BICO.0000009397.84153.79
Article
Google Scholar
Dogan YO, Hazir S, Yildiz A, Butt TM, Cakmak I (2017) Evaluation of entomopathogenic fungi for the control of Tetranychus urticae (Acari: Tetranychidae) and the effect of Metarhizium brunneum on the predatory mites (Acari: Phytoseiidae). Biol Control 111:6–12. https://doi.org/10.1016/j.biocontrol.2017.05.001
Article
Google Scholar
Eken C, Hayat R (2009) Preliminary evaluation of Cladosporium cladosporioides (Fresen.) de Vries in laboratory conditions, as a potential candidate for biocontrol of Tetranychus urticae Koch. World J Microbiol Biotechnol 25:489–492. https://doi.org/10.1007/s11274-008-9914-0
Article
Google Scholar
Elhakim E, Mohamed O, Elazouni I (2020) Virulence and proteolytic activity of entomopathogenic fungi against the twos potted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). Egypt J Biol Pest Control 30:1–8. https://doi.org/10.1186/s41938-020-00227-y
Article
Google Scholar
Gandarilla-Pacheco FL, Arévalo-Niño K, Galán-Wong LJ, Sandoval-Conrado CF, Quintero-Zapata I (2012) Evaluation of conidia production and mycelium growth in solid culture media from native strains of entomopathogenic fungi isolated from citrus-growing areas of Mexico. Afr J Biotechnol 11:14453–14460. https://doi.org/10.5897/AJB12.1658
Article
Google Scholar
Hassan DMA, Rizk MA, Sobhy HM, Mikhail WZA, Nada MS (2017) Virulent entomopathogenic fungi against the two-spotted spider mite Tetranychus urticae and some associated predator mites as non-target organisms. Egypt Acad J Biol Sci 10:37–56
Google Scholar
Jeyarani S, Gulsar Banu J, Ramaraju K (2011) First record of natural occurrence of Cladosporium cladossporioides (Fresenius) de Vries and Beauveria bassiana (Bals.-Criv.) Vuill on two spotted spider mite, Tetranychus urticae Koch from India. J Entomol 8:274–279. https://doi.org/10.3923/je.2011.274.279
Article
Google Scholar
Kepler RM, Rehner SA (2013) Genome-assisted development of nuclear intergenic sequence markers for entomopathogenic fungi of the Metarhizium anisopliae species complex. Mol Ecol Resour 13:210–217. https://doi.org/10.1111/1755-0998.12058
Article
CAS
PubMed
Google Scholar
Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096
Article
CAS
PubMed
PubMed Central
Google Scholar
Landeros FJ, Cerna CE, Aguirre ULA, Flores CR, Ochoa FY (2013) Demographic parameters of Tetranychus urticae (Acari: Tetranychidae) on four Rosa sp. cultivars. Florida Entomol 96:1508–1512. https://doi.org/10.1653/024.096.0432
Article
Google Scholar
Nussenbaum AL, Lewylle MA, Lecuona RE (2013) Germination, radial growth and virulence to boll weevil of entomopathogenic fungi at different temperatures. World Appl Sci J 25:1134–1140. https://doi.org/10.5829/idosi.wasj.2013.25.08.1237
Article
Google Scholar
Onsongo SK, Gichimu BM, Akutse KS, Dubois T, Mohamed SA (2019) Performance of three isolates of Metarhizium anisopliae and their virulence against Zeugodacus cucurbitae under different temperature regimes, with global extrapolation of their efficiency. Insects 10:1–13. https://doi.org/10.3390/insects10090270
Article
Google Scholar
Oyku DY, Hazir S, Yildiz A, Butt TM, Cakmak I (2017) Evaluation of entomopathogenic fungi for the control of Tetranychus urticae (Acari: Tetranychidae) and the effect of Metarhizium brunneum on the predatory mites (Acari: Phytoseiidae). Biol Control 111:6–12. https://doi.org/10.1016/j.biocontrol.2017.05.001
Article
Google Scholar
Pantou MP, Mavridou A, Typas MA (2003) IGS Sequence variation, group-I introns and the complete nuclear ribosomal DNA of the entomopathogenic fungus Metarhizium: Excellent tools for isolate detection and phylogenetic analysis. Fungal Genet Biol 38:159–174. https://doi.org/10.1016/S1087-1845(02)00536-4
Article
CAS
PubMed
Google Scholar
Permandi MA, Mukhlis B, Samosir BS, Siregar DY, Wayni M (2020) Physiology characterization of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae on different carbohydrates sources. J Phys Conf Ser 1477:1–6
Google Scholar
Ramírez-Milanes MN, Lezama-Gutiérrez R, Sánchez-Rangel JC, Chan-Cupul W, Buenrostro-Nava MT, Manzo-Sánchez G (2022) Genetic diversity of Metarhizium anisopliae isolated of insects and agroecosystems. Trop Subtrop Agroecosyst 25:1–8
Google Scholar
Serna-Domínguez MG, Andrade-Michel GY, Rosas-Valdez R, Castro-Félix P, Arredondo-Bernal HC, Gallou A (2019) Genetic diversity of the Metarhizium anisopliae complex in Colima, Mexico, using microsatellites. Fungal Biol 123:855–863. https://doi.org/10.1016/j.funbio.2019.09.005
Article
CAS
PubMed
Google Scholar
Shin TY, Bae SM, Kim DJ, Yun HG, Woo SD (2017) Evaluation of virulence, tolerance to environmental factors and antimicrobial activities of entomopathogenic fungi against two-spotted spider mite, Tetranychus urticae. Mycoscience 58:204–212. https://doi.org/10.1016/j.myc.2017.02.002
Article
Google Scholar
Souza R, Azevedo R, Lobo A, Rangel D (2014) Conidial water affinity is an important characteristic for termotolerance in entomopathogenic fungi. Biocontrol Sci Technol 24:448–461. https://doi.org/10.1080/09583157.2013.871223
Article
Google Scholar
Talaei-Hassanloui R, Kharazi-Pakdel A, Goettel MS, Little S, Mozaffari J (2007) Germination polarity of Beauveria bassiana conidia and its possible correlation with virulence. J Inverteb Pathol 94:102–107. https://doi.org/10.1016/j.jip.2006.09.009
Article
Google Scholar
Tapia-Tussell R, Lappe P, Ulloa M, Quijano-Ramayo A, Cáceres-Farfán M, Larqué-Saavedra A, Perez-Brito D (2006) A rapid and simple method for DNA extraction from yeasts and fungi isolated from Agave fourcroydes. Mol Biotechnol 33:67–70. https://doi.org/10.1385/MB:33:1:67
Article
CAS
PubMed
Google Scholar
Tapia-Tussell R, Quijano-Ramayo A, Cortes-Velazquez A, Lappe P, Larque-Saavedra A, Pérez-Brito D (2008) PCR-based detection and characterization of the fungal pathogens Colletotrichum gloeosporioides and Colletotrichum capsici causing anthracnose in papaya (Carica papaya L.) in the Yucatan Peninsula. Mol Biotechnol 40:293–298. https://doi.org/10.1007/s12033-008-9093-0
Article
CAS
PubMed
Google Scholar
Ummidi VRS, Josyula U, Vadlamani P (2013) Germination rates of Beauveria bassiana and Metarhizium anisopliae its possible correlation with virulence against Spodoptera litura larvae. Int J Adv Res 2:625–630
Google Scholar
Vitalis WW, Nguya KM, Markus K, Hamadi IB (2005) Pathogenicity of Beauveria bassiana and Metarhizium anisopliae to the tobacco spider mite Tetranychus evansi. Exp Appl Acarol 36:41–50. https://doi.org/10.1007/s10493-005-0508-3
Article
Google Scholar
White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sminsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press Inc, New York, pp 315–322. https://doi.org/10.1093/molbev/mst197
Chapter
Google Scholar
Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214. https://doi.org/10.1089/10665270050081478
Article
CAS
PubMed
Google Scholar