Abdel-Salam MS, Ameen HH, Soliman GM, Elkelany US, Asar AM (2018) Improving the nematicidal potential of Bacillus amyloliquefaciens and Lysinibacillus sphaericus against the root-knot nematode Meloidogyne incognita using protoplast fusion technique. Egypt J Biol Pest Control 28:31. https://doi.org/10.1186/s41938-018-0034-3
Article
Google Scholar
Akinrinlola RJ, Yuen GY, Drijber RA, Adesemoye AO (2018) Evaluation of Bacillus strains for plant growth promotion and predictability of efficacy by in vitro physiological traits. Int J Microbiol Article ID 5686874. https://doi.org/10.1155/2018/5686874
Caton TM, Witte LR, Ngyuen HD, Buchheim JA, Buchheim MA, Schneegurt MA (2004) Halotolerant aerobic heterotrophic bacteria from the Great Salt Plains of Oklahoma. Microb Ecol 48:449–462. https://doi.org/10.1007/s00248-004-0211-7
Article
CAS
PubMed
Google Scholar
Cayrol JC, Djian C, Pijarowski L (1989) Study of the nematicidal properties of the culture filtrate of the nematophagous fungus Paecilomyces lilacinus. Revue Nématol 12:331–336 https://horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_textes_5/pt5/nemato/27861.pdf
Google Scholar
Cetintas R, Kusek M, Fateh SA (2018) Effect of some plant growth-promoting rhizobacteria strains on root-knot nematode, Meloidogyne incognita, on tomatoes. Egypt J Biol Pest Control 28:7. https://doi.org/10.1186/s41938-017-0008-x
Article
Google Scholar
Chinnaswamy A, Coba de la Peña T, Stoll A, de la Peña RD, Bravo J, Rincón A, Lucas MM, Pueyo JJ (2018) A nodule endophytic Bacillus megaterium strain isolated from Medicago polymorpha enhances growth, promotes nodulation by Ensifer medicae and alleviates salt stress in alfalfa plants. Ann Appl Biol 172:295–308. https://doi.org/10.1111/aab.12420
Article
CAS
Google Scholar
Dong K, Dean RA, Fortnum BA, Lewis SA (2001) Development of PCR primers to identify species of root-knot nematodes: Meloidogyne arenaria, M. hapla, M. incognita and M. javanica. Nematropica 31:271–280 https://journals.flvc.org/nematropica/article/view/69633
Google Scholar
Duncan DB (1955) Multiple range and multiple F tests. Biometrics 11:1–42
Article
Google Scholar
Elmer WH (2009) Influence of earthworm activity on soil microbes and soil borne diseases of vegetables. Plant Dis 93:175–179. https://doi.org/10.1094/PDIS-93-2-0175
Article
PubMed
Google Scholar
Engelbrecht G, Horak I, Jansen van Rensburg PJ, Claassens S (2018) Bacillus-based bionematicides: development, modes of action and commercialization. Biocontrol Sci Techn 28:629–653. https://doi.org/10.1080/09583157.2018.1469000
Article
Google Scholar
Huang Y, Xu C, Ma L, Zhang K, Duan C, Mo MH (2010) Characterisation of volatiles produced from Bacillus megaterium YFM3.25 and their nematicidal activity against Meloidogyne incognita. Eur J Plant Pathol 126:417–422. https://doi.org/10.1007/s10658-009-9550-z
Article
CAS
Google Scholar
Hussey RS, Barker KR (1973) A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Dis Rep 57:1025–1028
Google Scholar
King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44:301–307
CAS
PubMed
Google Scholar
Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Bio Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054
Article
CAS
Google Scholar
Kumar SN, Mohandas C, Nambisan B (2014) Purification, structural elucidation and bioactivity of tryptophan containing diketopiperazines, from Comamonas testosteroni associated with a rhabditid entomopathogenic nematode against major human-pathogenic bacteria. Peptides 53:48–58. https://doi.org/10.1016/j.peptides.2013.09.019
Article
CAS
PubMed
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan P, McWilliam H, Thompson JD (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. https://doi.org/10.1093/bioinformatics/btm404
Article
CAS
PubMed
Google Scholar
Lateef A, Adelere IA, Gueguim-Kana EB (2015a) The biology and potential biotechnological applications of Bacillus safensis. Biologia 70:411–419. https://doi.org/10.1515/biolog-2015-0062
Article
Google Scholar
Lateef A, Adelere IA, Gueguim-Kana EB (2015b) Bacillus safensis LAU 13: a new novel source of keratinase and its multi-functional biocatalytic applications. Biotechnol Biotec Eq 29:54–63. https://doi.org/10.1080/13102818.2014.986360
Article
CAS
Google Scholar
Liu J, Yang LL, Xu CK, Xi JQ, Yang FX, Zhou F, Zhou Y, Mo MH, Li WJ (2012) Sphingobacterium nematocida sp. nov., a nematicidal endophytic bacterium isolated from tobacco. Int J Syst Evol Microbiol 62:1809–1813. https://doi.org/10.1099/ijs.0.033670-0
Article
CAS
PubMed
Google Scholar
Logan NA, De Vos P (2015) Bacillus. In: Whitman WB (ed) Bergey’s Manual of Systematics of Archaea and Bacteria. John Wiley & Sons, Hoboken, NJ. https://doi.org/10.1002/9781118960608.gbm00530
Chapter
Google Scholar
Marin-Bruzos M, Grayston SJ (2019) Biological control of nematodes by plant growth-promoting rhizobacteria: secondary metabolites involved and potential applications. In: Singh HB, Keswani C, Reddy MS, Sansinenea E, García-Estrada C (eds) Secondary metabolites of plant growth promoting rhizomicroorganisms. Springer, Singapore
Google Scholar
Mhatre PH, Karthik C, Kadirvelu K, Divya KL, Venkatasalam EP, Srinivasan S, Shanmuganathan R (2019) Plant growth promoting rhizobacteria (PGPR): a potential alternative tool for nematodes bio-control. Biocatal Agri Biotechnol 17:119–128. https://doi.org/10.1016/j.bcab.2018.11.009
Article
Google Scholar
Moens M, Perry RN, Starr JL (2009) Meloidogyne species – a diverse group of novel and important plant parasites. In: Perry RN, Moens M, Starr JL (eds) Root-knot Nematodes. CAB International, Wallingford
Google Scholar
Oka Y, Koltai H, Bar-Eyal M, Mor M, Sharon E, Chet I, Spiegel Y (2000) New strategies for the control of plant-parasitic nematodes. Pest Manag Sci 56:983–988. https://doi.org/10.1002/1526-4998(200011)56:11%3C983::AID-PS233%3E3.0.CO;2-X
Article
CAS
Google Scholar
Osman HA, El-Gindi AY, Youssef MM, Ameen HH, Abd-Elbary NA, da Silva JAT, Lashein AM (2011) Protection of Pseudomonas fluorescens against the root-knot nematode, Meloidogyne incognita; role of enzyme-induced resistance in eggplant. Pest Technol 5(1):44–47
Google Scholar
Padgham JL, Sikora RA (2007) Biological control potential and modes of action of Bacillus megaterium against Meloidogyne graminicola on rice. Crop Prot 26:971–977. https://doi.org/10.1016/j.cropro.2006.09.004
Article
Google Scholar
Pathma J, Sakthivel N (2012) Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. SpringerPlus 1(26):1–19 http://www.springerplus.com/content/1/1/26
Google Scholar
Pathma J, Sakthivel N (2013) Molecular and functional characterization of bacteria isolated from straw and goat manure based vermicompost. Appl Soil Ecol 70:33–47. https://doi.org/10.1016/j.apsoil.2013.03.011
Article
Google Scholar
Preston GM (2004) Plant perceptions of plant growth-promoting Pseudomonas. Phil Trans R Soc Lond B. 359:907–918. https://doi.org/10.1098/rstb.2003.1384
Article
CAS
Google Scholar
Renčo M, Kováčik P (2015) Assessment of the nematicidal potential of vermicompost, vermicompost tea, and urea application on the potato-cyst nematodes Globodera rostochiensis and Globodera pallida. J Plant Prot Res 55:187–192. https://doi.org/10.1515/jppr-2015-0025
Article
CAS
Google Scholar
Rostami M, Olia M, Arabi M (2014) Evaluation of the effects of earthworm Eisenia fetida-based products on the pathogenicity of root-knot nematode (Meloidogyne javanica) infecting cucumber. Inter J Recycl Org Agri 3:58. https://doi.org/10.1007/s40093-014-0058-y
Article
Google Scholar
Saikia SK, Tiwari S, Pandey R (2013) Rhizospheric biological weapons for growth enhancement and Meloidogyne incognita management in Withania somnifera cv. Poshita. Biol Control 65:225–234. https://doi.org/10.1016/j.biocontrol.2013.01.014
Article
Google Scholar
Saitou N (1988) Property and efficiency of the maximum likelihood method for molecular phylogeny. J Mol Evol 27:261–273. https://doi.org/10.1007/BF02100082
Article
CAS
PubMed
Google Scholar
Sánchez Ortiz I, Alvarez Lugo I, Wong Padilla I, Somontes D, Basulto Morales R, Morán Valdivia R, Mena Campos J (2018) Characterization of Cuban native bacteria isolated from nematodes as potential biological control agents for Meloidogyne spp. Rev Protección Veg 33:1–11 http://scielo.sld.cu/pdf/rpv/v33n1/rpv04118.pdf
Google Scholar
Schaad NW, Jones JB, Chun W (2001) Laboratory guide for the identification of plant pathogenic bacteria. In: American Phytopathological Society, 3rd edn. APS Press, St. Paul, Minn
Google Scholar
Siddiqui IA, Ehteshamul-Haque S (2001) Suppression of the root rot–root knot disease complex by Pseudomonas aeruginosa in tomato: the influence of inoculum density, nematode populations, moisture and other plant-associated bacteria. Plant Soil 237:81–89. https://doi.org/10.1023/A:1013313103032
Article
CAS
Google Scholar
Siddiqui ZA, Mahmood I (1999) Role of bacteria in the management of plant parasitic nematodes: a review. Bioresource Technol 69:167–179. https://doi.org/10.1016/S0960-8524(98)00122-9
Article
CAS
Google Scholar
Singh A, Singh DP, Tiwari R, Kumar K, Singh RV, Singh S, Prasanna R, Saxena AK, Nain L (2015) Taxonomic and functional annotation of gut bacterial communities of Eisenia foetida and Perionyx excavatus. Microbiol Re 175:48–56. https://doi.org/10.1016/j.micres.2015.03.003
Article
CAS
Google Scholar
Singh P, Siddiqi ZA (2010) Biocontrol of root-knot nematode Meloidogyne incognita by the isolates of Pseudomonas on tomato. Arch Phytopathol Plant Protect 43:1423–1434. https://doi.org/10.1080/03235400802536857
Article
Google Scholar
Singh RK, Kumar DP, Solanki MK, Singh P, Srivastva AK, Kumar S, Kashyap PL, Saxena AK, Singhal PK, Arora DK (2013) Optimization of media components for chitinase production by chickpea rhizosphere associated Lysinibacillus fusiformis B-CM18. J Basic Microbiol 53:451–460. https://doi.org/10.1002/jobm.201100590
Article
CAS
PubMed
Google Scholar
Tran TPH, Wang SL, Nguyen VB, Tran DM, Nguyen DS, Nguyen AD (2019) Study of novel endophytic bacteria for biocontrol of black pepper root-knot nematodes in the central highlands of Vietnam. Agronomy 9:714. https://doi.org/10.3390/agronomy9110714
Article
CAS
Google Scholar
Vigila V, Subramanian S, Devrajan K (2019) PGPR induced systemic resistance in tomato plants against root knot nematode, Meloidogyne incognita. J Pharmacogn Phytochem 8(2S):749–752 https://www.phytojournal.com/archives/2019/vol8issue2S/PartT/SP-8-2-182-314.pdf
CAS
Google Scholar
Wani AH (2015) Plant growth-promoting rhizobacteria as biocontrol agents of phytonematodes. In: Askary TH, Martinelli PRP (eds) Biocontrol Agents of Phytonematodes. CAB International, Wallingford, pp 339–364
Chapter
Google Scholar
Whitehead AG, Hemming JR (1965) A comparison of some quantitative methods of extracting small vermiform nematodes from soil. Ann Appl Biol 55:25–38. https://doi.org/10.1111/j.1744-7348.1965.tb07864.x
Article
Google Scholar
Xi J, Qin X, Lin D, Sheng Y, Zhen S, He M, Qun X, Shan W, Hua G (2013) Identification of volatiles with nematicidal activities from Sphingobacterium nematocida ZY-71-1 and control efficiency to Meloidogyne incognita. Paper presented at Tobacco Science Research Conference, Yunnan University and CNTC Zhengzhou Tobacco Research Institute, China 2013
Google Scholar
Xiang N, Lawrence KS, Kloepper JW, Donald PA, Mclnroy JA (2017a) Biological control of Heterodera glycines by spore-forming plant growth-promoting rhizobacteria (PGPR) on soybean. PLoS ONE 12(7):e0181201. https://doi.org/10.1371/journal.pone.0181201
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiang N, Lawrence KS, Kloepper JW, Donald PA, Mclnroy JA, Lawrence GW (2017b) Biological control of Meloidogyne incognita by spore-forming plant growth-promoting Rhizobacteria on cotton. Plant Dis 101:774–784. https://doi.org/10.1094/PDIS-09-16-1369-RE
Article
CAS
PubMed
Google Scholar
Xiao Z, Liu M, Jiang L, Chen X, Griffiths BS, Li H, Hu F (2016) Vermicompost increases defense against root-knot nematode (Meloidogyne incognita) in tomato plants. Appl Soil Ecol 105:177–186. https://doi.org/10.1016/j.apsoil.2016.04.003
Article
Google Scholar
Yang LL, Huang Y, Liu J, Ma L, Mo MH, Li WJ, Yang FX (2012) Lysinibacillus mangiferahumi sp. nov., a new bacterium producing nematicidal volatiles. Antonie Leeuwenhoek 102:53–59. https://doi.org/10.1007/s10482-012-9712-4
Article
CAS
PubMed
Google Scholar
Zhai Y, Shao Z, Cai M, Zheng L, Li G, Huang D, Cheng W, Thomashow LS, Weller DM, Yu Z, Zhang J (2018) Multiple modes of nematode control by volatiles of Pseudomonas putida 1A00316 from Antarctic soil against Meloidogyne incognita. Front Microbiol 9:253. https://doi.org/10.3389/fmicb.2018.00253
Article
PubMed
PubMed Central
Google Scholar