Akbari S, Safavi S, Ghosta Y (2014) Efficacy of Beauveria bassiana (Blas.) Vuill. against cabbage aphid Brevicoryne brassicae L. (Hem.: Aphididae) in laboratory condition. Arch Phytopath Plant Protect 47(12):1454–1458
Article
Google Scholar
Almeida P, Pokorny A (2012) Comprehensive biophysics. Academic Press, Cambridge, pp 189–222
Book
Google Scholar
Alves da Silva R, Dias Quintela E, Moura Mascarin G, Pedrini N, Moraes Lião L, Henrique FP (2015) Unveiling chemical defense in the rice stalk stink bug against the entomopathogenic fungus Metarhizium anisopliae. J Invertebr Pathol. 127:93–100
Article
CAS
Google Scholar
Ambethgar V (2009) Potential of entomopathogenic fungi in insecticide resistance management (IRM): A review. J Biopestic. 2(2):177–193
CAS
Google Scholar
Amparyup P, Charoensapsri W, Tassanakajon A (2013) Prophenoloxidase system and its role in shrimp immune responses against major pathogens. Fish Shellfish Immunol. 34(4):990–1001
Article
CAS
PubMed
Google Scholar
Audoin V (1837) Nouvelles expériences sur la nature de la maladie contagieuse qui attaque les Vers a` soie, et qu’on désigne sous le nom de Muscardine. Ann. Sci. Nat. 8:257–270
Google Scholar
Biswas C, Dey P, Satpathy S, Satya P, Mahapatra BS (2013) Endophytic colonization of white jute (Corchorus capsularis) plants by different Beauveria bassiana strains for managing stem weevil (Apion corchori). Phytoparasit. 41:17–21
Article
Google Scholar
Brivio M, Mastore M, Nappi A (2010) A pathogenic parasite interferes with phagocytosis of insect immunocompetent cells. Dev Comp Immunol. 34:991–998
Article
CAS
PubMed
Google Scholar
Bruck DJ, Lewis LC (2002) Carpophilus freemani (Coleoptera: Nitidulidae) as a vector of Beauveria bassiana. J Invertebr Pathol. 80:188–190
Article
PubMed
Google Scholar
Bugeme DM, Maniania NK, Knapp M, Boga HI (2008) Effect of temperature on virulence of Beauveria bassiana and Metarhizium anisopliae isolates to Tetranychus evansi. Exp Appl Acarol. 46:275–285
Article
PubMed
Google Scholar
Butt TM (2002) Use of entomogenous fungi for the control of insect pests. In Agricultural applications. Springer, Berlin, Heidelberg, pp 111–134
Google Scholar
Cagáň Ľ, Uhlík V (1999) Pathogenicity of Beauveria bassiana strains isolated from Ostrinia nubilalis Hbn. (Lepidoptera: Pyralidae) to original host and to ladybirds (Coleoptera: Coccinellidae). Plant Protect Sci 35:108–112
Article
Google Scholar
Cardoso M, Oshiro K, Rezende S, Cândido ES, Franco OL (2018) The structure/function relationship in antimicrobial peptides: what can we obtain from structural data? In Advances in protein chemistry and structural biology (Elsevier), pp 359–384
Google Scholar
Chen H-C, Brown JH, Morell JL, Huang CM (1988) Synthetic magainin analogues with improved antimicrobial activity. FEBS Lett. 236(462):466
Google Scholar
Cooper D, Eleftherianos I (2017) Memory and specificity in the insect immune system: current perspectives and future challenges. Front Immunol. 8:539
Article
PubMed
PubMed Central
CAS
Google Scholar
Correa-Cuadros JP, Rodríguez-Bocanegra M, Sáenz-Aponte A (2014) Susceptibility of Plutella xylostella (Lepidoptera: Plutellidae; Linnaeus 1758) to Beauveria bassiana Bb9205, Metarhizium anisopliae Ma9236 and Heterorhabditis bacteriophora HNI0100. Univ. Sci. 19(3):277–285
Google Scholar
Da Silva P, Jouvensal L, Lamberty M, Bulet P, Caille A, Vovelle F (2003) Solution structure of termicin, an antimicrobial peptide from the termite Pseudacanthotermes spiniger. Protein Sci. 12:438–446
Article
PubMed
PubMed Central
CAS
Google Scholar
De Lucca A, Walsh T (2000) Antifungal peptides: origin, activity, and therapeutic potential. Rev Iberoam Micol. 17:116–120
Google Scholar
Desbois AP, Gemmell CG, Coote PJ (2010) In vivo efficacy of the antimicrobial peptide ranalexin in combination with the endopeptidase lysostaphin against wound and systemic meticillin-resistant Staphylococcus aureus (MRSA) infections. Int J Antimicrob Ag. 35:559–565
Article
CAS
Google Scholar
Devi K, Rao C, Allee A (2006) Effect in the infection dynamics of the entomopathogenic Fungus Beauveria bassiana (Bals) Vuill. on the beetle, Mylabris pustulata. Mycopathol 161(6):385–394
Article
Google Scholar
Faria MR, Wraight SP (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43(3):237–256
Article
CAS
Google Scholar
Faye I, Hultmark D (1993) The insect immune proteins and the regulation of their genes. Para Patho Insec. 2:25–53
Google Scholar
Fehlbaum P, Bulet P, Michaut L, Lagueux M, Broekaert W, Hetru C, Hoffmann J (1994) Insect immunity. Septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant antifungal peptides. J Biol Chem 269:33159–33163
Article
CAS
PubMed
Google Scholar
Fernández-Carneado J, Kogan M, Pujals S, Giralt E (2004) Amphipathic peptides and drug delivery. Peptide Science: Original Research on Biomolecules 76:196–203
Article
CAS
Google Scholar
Fite T, Icon T, Tefera M, Negeri T, Damte WS (2019) Evaluation of Beauveria bassiana, Metarhizium anisopliae, and Bacillus thuringiensis for the management of Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) under laboratory and field conditions. Bio Sci Technol. 30(3):278–295
Article
Google Scholar
Fosso M, AlFindee M, Zhang Q, Nziko V, Kawasaki Y, Shrestha S, Bearss J, Gregory R, Takemoto J, Chang C-W (2015) Structure–activity relationships for antibacterial to antifungal conversion of kanamycin to amphiphilic analogues. J org chem. 80:4398–4411
Article
CAS
PubMed
Google Scholar
Fu P, Wu J, Guo G (2009) Purification and molecular identification of an antifungal peptide from the hemolymph of Musca domestica (housefly). Cell Mol Immunol. 6:245–251
Article
CAS
PubMed
PubMed Central
Google Scholar
Garrido-Jurado I, Torrent J, Barrón V, Corpas A, Quesada-Moraga E (2011) Soil properties affect the availability, movement, and virulence of entomopathogenic fungi conidia against puparia of Ceratitis capitata (Diptera: Tephritidae). Biol Cont. 58:277–285
Article
Google Scholar
Gelotar P, Vachhani S, Patel B, Makwana N (2013) The prevalence of fungi in fingernail onychomycosis. J Clin Diagno Res 7:250
Google Scholar
Goettel MS, Inglis GD, Wraight SP (2000) In: Lacey LA, Kaya HK (eds) Fungi, in field manual in Invertebrate Pathology. Kluwer Academic Press, Dordrecht, The Netherlands, pp 255–282
Chapter
Google Scholar
González-Santoyo I, Córdoba-Aguilar A (2012) Phenoloxidase: a key component of the insect immune system. Entomol Exp Appl. 142:1–16
Article
CAS
Google Scholar
Gryganskyi A, Humber R, Smith M, Hodge K, Huang B, Voigt K (2013) Phylogenetic lineages in Entomophthoromycota. Persoonia 30:94–105
Article
CAS
PubMed
PubMed Central
Google Scholar
Hageskal G, Knutsen AK, Gaustad P, De Hoog GS, Skaar I (2006) Diversity and significance of mold species in Norwegian drinking water. Appl. Environ. Microbiol. 72:7586–7593
Article
CAS
PubMed
PubMed Central
Google Scholar
Hajdušek O, Sima R, Ayllon N, Jalovecka M, Perner J, de la Fuente J (2013) Interaction of the tick immune system with transmitted pathogens. Front Cell Infect Microbiol. 3:26
Article
PubMed
PubMed Central
CAS
Google Scholar
Hajek AE, Goettel MS (2007) Guidelines for evaluating effects of entomopathogens on non-target organisms. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology. Springer Netherlands, Dordrecht, pp 816–833
Chapter
Google Scholar
Hale JD, Hancock RE (2007) Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti-Infective Ther 5:951–959
Article
CAS
Google Scholar
Haron N, Ahmed M, Ali S, Abas A, Elshaier M (2020) Evaluate the effects of entomopathogenic fungi isolates on Wheat Aphid, Schizaphis graminum (Rondani) (Hemiptera: Aphididae). EAJBSA 13(2):149–159
Google Scholar
Hassan FR, Abdullah SK, Assaf LH (2019) Pathogenicity of the entomopathogenic fungus, Beauveria bassiana (Bals.) Vuill. endophytic and a soil isolate against the squash beetle, Epilachna chrysomelina (F.) (Coleoptera: Coccinellidae). Egypt J Biol Pest Control 29:74
Article
Google Scholar
Hesketh H, Alderson P, Pye B, Pell J (2008) The development and multiple uses of a standardized bioassay method to select hypocrealean fungi for biological control of aphids. Biol Control. 46(2):242–255
Article
CAS
Google Scholar
Hou CX, Qin GX, Liu T, Mei XL, Li B, Shen ZY, Guo XJ (2013) Differentially expressed genes in the cuticle and hemolymph of the silkworm, Bombyx mori, injected with the fungus Beauveria bassiana. J Insect Sci 13:138
Article
PubMed
PubMed Central
Google Scholar
Jaronski ST, Mascarin GM (2017) Mass production of fungal entomopathogens. In Microbial control of insect and mite pests. Academic Press, pp 141–155
Khaleel A, Nawaz M, Hindawi B (2013) Sol–gel derived Cr (III) and Cu (II)/γ-Al2O3 doped solids: effect of the dopant precursor nature on the structural, textural and morphological properties. Mater Res Bull. 48:1709–1715
Article
CAS
Google Scholar
Klinger E, Eleanor G, Francis D (2006) Beauveria bassiana horizontal infection between cadavers and adults of the Colorado Potato Beetle, Leptinotarsa decemlineata (Say). Environment Entomol 35(4):992–1000
Article
Google Scholar
Laverty G, Gorman S, Gilmore BF (2011) The potential of antimicrobial peptides as biocides. Inter J molecul sci. 12:6566–6596
Article
CAS
Google Scholar
Lavine MD, Strand M (2002) Insect hemocytes and their role in immunity. Insect Biochem. Mol. Biol. 32(10):1295–1309
CAS
Google Scholar
Leao MP, Tiago PV, Andreote FD, de Araujo WL, de Oliveira NT (2015) Differential expression of the pr1A gene in Metarhizium anisopliae and Metarhizium acridum across different culture conditions and during pathogenesis. Genet. Mol. Biol. 38:86–92
Article
CAS
PubMed
Google Scholar
Lemaitre B, Reichhart J-M, Hoffmann JA (1997) Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Nat Acad Sci. 94:14614–14619
Article
CAS
PubMed
PubMed Central
Google Scholar
Leuschner C, Hansel W (2004) Membrane disrupting lytic peptides for cancer treatments. Curr pharm des. 10:2299–2310
Article
CAS
PubMed
Google Scholar
Lopez DC, Zhu-Salzman K, Ek-Ramos MJ, Sword GA (2014) The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions. PLoS One. 9:e103891
Article
Google Scholar
Maina UM, Galadima IB, FM Gambo FM, Zakaria D. (2018) A review on the use of entomopathogenic fungi in the management of insect pests of field crops. J Entomol Zool Studies 6(1):27–32
Google Scholar
Maloy WL, Kari UP (1995) Structure–activity studies on magainins and other host defense peptides. Biopolymers 37:105–122
Article
CAS
PubMed
Google Scholar
Maurer P, Couteaudier Y, Girard P, Bridge P, Riba G (1997) Genetic diversity of Beauveria bassiana and relatedness to host insect range. Mycol Res. 101:159–164
Article
Google Scholar
Meyling NV, Lubeck M, Buckley EP, Eilenberg J, Rehner SA (2009) Community composition, host range and genetic structure of the fungal entomopathogen Beauveria in adjoining agricultural and semi natural habitats. Mol Ecol. 18:1282–1293
Article
CAS
PubMed
Google Scholar
Mishra B, Wang G (2012) Ab initio design of potent anti-MRSA peptides based on database filtering technology. J Am Chem Soc. 134:12426–12429
Article
CAS
PubMed
PubMed Central
Google Scholar
Mishra S, Kumar P, Malik A (2015) Effect of temperature and humidity on pathogenicity of native Beauveria bassiana isolate against Musca domestica L. J Parasitic Dis 39(4):697–704
Article
Google Scholar
Moonjely S, Barelli L, Bidochka MJ. 2016. Insect pathogenic fungi as endophytes. In: St Leger RJ, editor. Advances in genetics. Academic Press; pp. 107–135.
Mweke A, Ulrichs C, Nana P (2018) Evaluation of the entomopathogenic fungi Metarhizium anisopliae, Beauveria bassiana, and Isaria sp. for the management of Aphis craccivora (Hemiptera: Aphididdae). J Econ Entomol 111(4):1587–1594
Article
CAS
PubMed
Google Scholar
Nolard N (2004) Allergy to moulds. BCCM Newsletter 16:1–3
Google Scholar
Ocampo-Hernández JA, Tamayo-Mejía F, Tamez-Guerra P, Gao Y, Guzmán-Franco AW (2019) Different host plant species modifies the susceptibility of Bactericera cockerelli to the entomopathogenic fungus Beauveria bassiana. J Appl Entomol. 143:984–991
Article
CAS
Google Scholar
Olivera RC, Neves PM (2004) Biological control compatibility of Beauveria bassiana with acaricides. Neotrop Entomol. 33:353–358
Google Scholar
Pasteur L (1874) Observations (au sujet des conclusions de M. Dumas) relatives au phylloxera. Comptes rendus hebdomadaires des séances de l’Académie des Sci 79:1233–1234
Google Scholar
Pasupuleti M, Schmidtchen A, Malmsten M (2012) Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol. 32:143–171
Article
CAS
PubMed
Google Scholar
Paula AR, Carolino AT, Silva CP, Samuels RI (2011) Susceptibility of adult female Aedes aegypti (Diptera: Culicidae) to the entomopathogenic fungus Metarhizium anisopliae is modified following blood feeding. Parasites Vector. 4:91
Article
Google Scholar
Pedrini N, Ortiz-Urquiza A, Huarte-Bonnet C, Zhang S, Keyhani NO (2013) Targeting of insect epicuticular lipids by the entomopathogenic fungus Beauveria bassiana: hydrocarbon oxidation within the context of a host pathogen interaction. Front Microbiol. 4:24
Article
PubMed
PubMed Central
Google Scholar
Price RL, Bugeon L, Mostowy S, Makendi C, Wren B, Williams H, Willcocks S (2019) In vitro and in vivo properties of the bovine antimicrobial peptide, Bactenecin 5. PloS One 14:e0210508
Article
CAS
PubMed
PubMed Central
Google Scholar
Pushpanathan M, Gunasekaran P, Rajendhran J (2013) Antimicrobial peptides: versatile biological properties. Int J Pept 675391:1–15
Article
CAS
Google Scholar
Qiu F, Chen Y, Tang C, Zhao X (2018) Amphiphilic peptides as novel nanomaterials: design, self-assembly and application. Int J Nanomed. 13:5003
Article
CAS
Google Scholar
Quesada-Moraga E, Navas-Cortes E, Maranhao E, Ortiz-Urquiza A, Santiago-Alvarez C (2007) Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and cultivated soils. Mycol Res. 111:947–966
Article
PubMed
Google Scholar
Ramanujam B, Rangeshwaran R, Sivakmar G, Mohan M, Yandigeri MS (2014) Management of insect pests by microorganisms. Proc Indian National Sci Acad. 80(2):455–471
Article
Google Scholar
Ravensberg W (2015) Crop protection in 2030: towards a natural, efficient, safe and sustainable approach. In: International Symposium on Biopesticides, Swansea University, pp 7–9
Google Scholar
Rehner SA, Buckley E (2005) Beauveria phylogeny inferred from nuclear IST and EFI-asequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycol. 97:84–98
CAS
Google Scholar
Sahayaraj K, Karthick Raja NS (2011) Field evaluation of three entomopathogenic fungi on groundnut pests. Tropicultura 29(3):143–147
Google Scholar
Sajid M, Bashir N, Batool Q, Munir I, Bilal M, Jamal A, Munir S (2017) In-vitro evaluation of biopesticides (Beauveria bassiana, Metarhizium anisopliae, Bacillus thuringiensis) against mustard aphid Lipaphis erysimi kalt. (Hemiptera: Aphididae). JEZS 5(6):331–335
Google Scholar
Santi L, Beys da Silva W, Berger M, Guimarães J, Schrank A, Vainstein M (2010) Conidial surface proteins of Metarhizium anisopliae: Source of activities related with toxic effects, host penetration and pathogenesis. Toxicon 55:874–880
Article
CAS
PubMed
Google Scholar
Sayed A, Dunlap CA (2019) Virulence of some entomopathogenic fungi isolates of Beauveria bassiana (Hypocreales: Cordycipitaceae) and Metarhizium anisopliae (Hypocreales: Clavicipitaceae) to Aulacaspis tubercularis (Hemiptera: Diaspididae) and Icerya seychellarum (Hemiptera: Monophlebidae) on Mango Crop. J Econ Entomol. 112(6):2584–2596
CAS
PubMed
Google Scholar
Schäfer-Korting M, Rolff J (2018) Skin delivery of antimicrobial peptides. Emerging Nanotechnol Immunol., (Elsevier), pp 23–45
Book
Google Scholar
Schmidt NW, Wong GC (2013) Antimicrobial peptides and induced membrane curvature: geometry, coordination chemistry, and molecular engineering. Curr Opin Solid State Mater Sci. 17:151–163
Article
CAS
PubMed
PubMed Central
Google Scholar
Schuhmann B, Seitz V, Vilcinskas A, Podsiadlowski L (2003) Cloning and expression of gallerimycin, an antifungal peptide expressed in immune response of greater wax moth larvae, Galleria mellonella. Arch Insect Biochem Physiol 53:125–133
Article
CAS
PubMed
Google Scholar
Shahid A, Rao A, Bakhsh A, Husnain T (2012) Entomopathogenic fungi as biological controllers: new insights into their virulence and pathogenicity. Arch Biol Sci Belgrade 64(1):21–42
Article
Google Scholar
Shai Y (2002) From innate immunity to de-novo designed antimicrobial peptides. Curr Pharma Design 8:715–725
Article
CAS
Google Scholar
Sufyan M, Abbasi A, Wakil W (2019) Efficacy of Beauveria Bassiana and Bacillus Thuringiensis against Maize Stem Borer Chilo Partellus (Swinhoe) (Lepidoptera: Pyralidae). Gesunde Pflanzen 71:197–204
Article
CAS
Google Scholar
Sujeetha JA, Sahayaraj K (2014) Role of entomopathogenic fungus in pest management. In Basic and applied aspects of biopesticides. Springer, New Delhi, pp 31–46
Book
Google Scholar
Tawara S, Ikeda F, Maki K, Morishita Y, Otomo K, Teratani N, Goto T, Tomishima M, Ohki H, Yamada A (2000) In vitro activities of a new lipopeptide antifungal agent, FK463, against a variety of clinically important fungi. Antimicrob Agents Chemother. 44:57–62
Article
CAS
PubMed
PubMed Central
Google Scholar
Taylor K, Barran PE, Dorin JR (2008) Structure–activity relationships in β-defensin peptides. Pep Sci. 90:1–7
Article
CAS
Google Scholar
Thomas S, Karnik S, Barai RS, Jayaraman VK, Idicula-Thomas S (2010) CAMP: a useful resource for research on antimicrobial peptides. Nucleic Acids Res. 38:D774–D780
Article
CAS
PubMed
Google Scholar
Toledo J, Liedo P, Flores S, Campos SE, Villaseñor A, Montoya P, Sugayama R, Zucchi R, Ovruski S, Sivinski J (2008) Use of Beauveria bassiana and Metarhizium anisopliae for fruit fly control: a novel approach. In: RL Sugayama RA, Zucchi SMO, Sivinski J (eds) Fruit flies of economic importance: from basic to applied knowledge. Press Color Gráficos Especializados Ltda, Salvador, Brazil, pp 127–132
Google Scholar
Ullah MI, Altaf N, Afzal M, Arshad M, Mehmood N, Riaz M, Majeed S, Ali S, Abdullah A (2019) Effects of entomopathogenic fungi on the biology of Spodoptera litura (Lepidoptera: Noctuidae) and its reduviid predator, Rhynocoris marginatus (Heteroptera: Reduviidae). Int J Insect Sci 11:1179543319867116
Article
PubMed
PubMed Central
Google Scholar
Uma Devi K, Padmavathia J, Uma C, Maheswara R, Akbar A, Khanc P, Murali C, Mohand (2008) A study of host specificity in the entomopathogenic fungus Beauveria bassiana (Hypocreales, Clavicipitaceae). Biocontrol Sci Technol 18(9/10):975–989
Article
Google Scholar
Van der Weerden NL, Bleackley MR, Anderson MA (2013) Properties and mechanisms of action of naturally occurring antifungal peptides. Cell Mol Life Sci. 70:3545–3570
Article
PubMed
CAS
Google Scholar
Vega FE, Goettel M, Blackwell M, Chandler D, Jackson M, Keller M, Koike NK, Maniania A, Monzon B, Ownley JK, Pell DE, Rangel HE (2009) Fungal entomopathogens: new insights on their ecology. Fungal ecol. 2:149–159
Article
Google Scholar
Wang G, Li X, Wang Z (2009) APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic acids res. 37:D933–D937
Article
CAS
PubMed
Google Scholar
Wilson CL, Schmidt A, Pirilä E, Valore EV, Ferri N, Sorsa T, Ganz T, Parks WC (2009) Differential processing of α-and β-defensin precursors by matrix metalloproteinase-7 (MMP-7). J Biol Chem. 284:8301–8311
Article
CAS
PubMed
PubMed Central
Google Scholar
Yeung AT, Gellatly SL, Hancock RE (2011) Multifunctional cationic host defence peptides and their clinical applications. Cell Mol Life Sci. 68:2161
Article
CAS
PubMed
Google Scholar
Zelezetsky I, Pag U, Sahl H-G, Tossi A (2005) Tuning the biological properties of amphipathic α-helical antimicrobial peptides: rational use of minimal amino acid substitutions. Pept. 26:2368–2376
Article
CAS
Google Scholar
Zimmermann G (2007) Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Sci Technol. 17(5/6):553–596
Article
Google Scholar