Abbas MST (2018) Genetically engineered (modified) crops (Bacillus thuringiensis crops) and the world controversy on their safety. Egypt.J.Biol. Pest Control 28:52(368-379):1–12
Google Scholar
Al-Deeb MA, Wilde GE (2003) Effect of Bt-corn expressing Cry3Bb1 toxin for corn rootworm on above ground non-target arthropods. Environ. Entomol. 32(5):1164–1170
Article
Google Scholar
Andrews RE, Faust RM, Raymond KC, Bulla LA Jr (1987) The biotechnology of Bacillus thuringiensis. CRC Crit. Rev. Biotechnol 6:163–232
Article
CAS
Google Scholar
Arshad M, Abdul Rahman M, Khan HA, Saeed NA (2015) Incidence of insect predators and parasitoids on transgenic Bt-cotton in comparison with non-Bt-cotton. Pakistan J. Zoology 47(3):823–829
Google Scholar
Atwood DW, Young SY, Kring TJ (1997) Development of Cotesia marginiventris in tobacco budworm (Lep.:Noctuidae) larvae treated with Bacillus thuringiensis and thiodicarb. J.Econ.Entomol 90(3):751–756
Article
Google Scholar
Atwood DW, Young SY, Kring TJ (1999) Microplitis croceipes (Hym. :Braconidae) development in tobacco budworm larvae treated with Bacillus thuringiensis and thiodicarb. J. Entomological Science 34(2):249–259
Article
Google Scholar
Bai YY, Jiang MX, Cheng JA, Wang D (2006) Effects of Cry1Ab toxin on Propylea japonica (Col.: Coccinellidae) through its prey, Nilaparcata lugens (Hom.:Delphacidae), feeding on Bt-rice. Environ.Entomol 35:1130–1136
Article
CAS
Google Scholar
Baur ME, Boethel DJ (2003) Effect of Bt cotton expressing Cry1Ac on survival and fecundity of two hymenopteran parasitoids in the laboratory. Biological Control 26:325–332
Article
CAS
Google Scholar
Beline, T. 2018. Entomopathogenic nematodes as biocontrol agents of insect pests. CAB Reviews 2018, 13,No.058. http://www.cabi.org/cabreviews
Blumberg D, Navon A, Keren S, Goldenberg S, Ferkovich SM (1997) Interactions among Helicoverpa armigera, its larval parasitoid Microplitis croceipes and Bacillus thuringiensis. J.Econ.Entomol 90(5):1181–1186
Article
Google Scholar
Bravo A, Gill SS, Soberon M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49:422–435
Article
CAS
Google Scholar
Broderick NA, Raffa KF, Handelsman J (2006) Midgut bacteria required for Bt insecticidal activity. Proc.Natl.Acad.Sci.,USA 103(41):196–199
Article
CAS
Google Scholar
Caceres CE (2009) Predators-spreaders: predation can enhance parasite success in a planktonic host-parasite system. Ecology 90:2850–2858
Article
PubMed
Google Scholar
Carvalho VFP, Vacari AM, Pomari AF, Bortoli SD (2012) Interaction between Podisus nigrispinus and Bacillus thuringiensis. Environ.Entomol. 41:1454–1461
Article
CAS
PubMed
Google Scholar
Crickmore, N.; Zeigler, D.R.; Schnepf, E.; Baum, J.; Bravo, A. and Dean, D.H. 2014. Bacillus thuringiensis toxins nomenclature. www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt
Cui JJ, Luo JY, Wang CY, Li SH, Li CH (2005) Effects of transgenic Cry1Ac plus CpT1 cotton on development of main parasitoids of Helicoverpa armigera in laboratory. Cotton Science 17:3741–3745
Google Scholar
Dahi HF (2013) Assessment of the effects of transgenic Bt-cotton that contains Cry1Ac and Cry2Ab toxins on the abundance of non-target organisms community. J Nat Sci (JNSCI) 11(2):117–122
Google Scholar
Dang C, Lu Z, Wang L, Chang X, Ye G (2017) Does Bt-rice pose risks to non-target arthropods ?. Results of meta-analysis in China. Plant Biotechnol.J 15:1047–1053
Article
CAS
PubMed
PubMed Central
Google Scholar
De Carvalho GA, Martins D, de Brito IM, Assis SL (2018) Can Bacillus thuringiensis affect the biological variables of natural enemies of Lepidoptera? Arquivos do Instituto Biologico 85:112. https://doi.org/10.1590/1808-1657000052018
Article
Google Scholar
Dequech STB, da Silva RFB, Fiuza LM (2005) Interactions between Spodoptera frugiperda, Campoletis flavicincta and Bacillus thuringiensis aizawai in laboratory. Neotropical Entomology 34(6):1–10
Article
Google Scholar
Dhillon MK, Sharma HC (2013) Comparative studies on the effects of Bt-transgenic cotton on the arthropods diversity, seed-cotton yield and bollworms control. J.Environ. Biol. 34:67–73
CAS
PubMed
Google Scholar
Dutton A, Klein S, Romeis J, Bigler F (2003) Prey mediated effects of Bacillus thuringiensis spray on the predator, Chrysoperla carnea in maize. Biological Control 26:209–215
Article
Google Scholar
Ebrahimi M, Sahrafard A, Talaci-Hassanloui R (2012) Effect of Bacillus thuringiensis var. kurstaki on survival and mortality of immature and mature stages of Diadegma insulare parasitizing Plutella xylostella. Phytoparasitica 40:393–401
Article
Google Scholar
Eisenring M, Romeis J, Naranjo SE, Meissle M (2017) Multitrophic toxin flow in a Bt-cotton field. Agric.Ecosyst.Environ. 247:283–289
Article
CAS
Google Scholar
Famil M, Hesami S, Seyahooi MA (2012) Effect of Bacillus thuringiensis on some biological characteristics of the parasitoid, Habrobracon hebetor. ARPP 7(3):67–75 https://www.researchgate.net/publication/330385924
Google Scholar
Fazal, S. 2004. Biological control of Bemisia tabaci on poinsettia with Eretmocerus sp. (Hym.:Aphelinidae), Serangium japonicum (Col.: Coccinellidae) and Paecilomyces fumosoroseus (Deuteromycotina: Hyphomycetes). Ph.D. thesis, South China Agricultural University, Guangzhou, China.
Ferguson KI, Stiling P (1996) Non-additive effects of multiple natural enemies on aphid populations. Oecologia 108:375–379
Article
PubMed
Google Scholar
Fernandes OA, Faria M, Martinelli S, Schmidt F, Moro G (2007) Short term assessment of Bt-maize on non-target arthropods in Brazil. Sci. Agric. (Perosicaba, Braz.) 64:249–255
Article
Google Scholar
Gill SS, Cowels EA, Pietrantonio PV (1992) The mode of action of Bt endotoxins. Annu.Rev.Entomol. 37:615–636
Article
CAS
PubMed
Google Scholar
Head G, Moar M, Eubanks M, Freeman B, Turnipseed S (2005) A multiyear large scale comparison of arthropods populations on commercially managed Bt and non-Bt-cotton fields. Environ.Entomol. 34:1247–1267
Google Scholar
Hilbeck A, Baumgartner M, Fried PM, Bigler F (1999) Effects of transgenic Bt-corn-fed prey on immature development of Chrysoperla carnea. Environ. Entomol. 27:480–487
Article
Google Scholar
Hilbeck A, Moar W, Pusztai-Garet M, Bigler F (1998) Toxicity of Bacillus thuringiensis Cry1Ab toxin to Chrysoperla carnea. Environ.Entomol. 27:1255–1263
Article
CAS
Google Scholar
Hofte H, Whitely HP (1989) Insecticidal crystal proteins. J. Microbial Mol. Biol.Rev 53:242–255
CAS
Google Scholar
Labauda S, Griffin CT (2018) Transmission success of entomopathogenic nematodes used in pest control. Insects 2018(9):72–91. https://doi.org/10.3390/insects9020072
Article
Google Scholar
Li Y, Meissle M, Romeis J (2010) Use of maize pollen by adult, Chrysoperla carnea and fate of Cry proteins in Bt transgenic varieties. J.Insect.Physiol. 56:157–164
Article
CAS
PubMed
Google Scholar
Liu Y, Liu Q, Wang Y, Chen X, Peng Y (2016) Ingestion of Bt-corn pollen containing Cry1Ab or Cry1Ac does not harm Propylea japonica larvae. SciRep 2016(6):23507. Published online 2016 Mar. 23. https://doi.org/10.1038/srep23507
Article
CAS
Google Scholar
Lu YH, Kongming Wu, Yuying J, Yuyuan G, Nicolas D (2012) Widespread adoption of Bt--cotton and insecticide decrease promotes bio-control services. Nature 487:362–365
Article
CAS
PubMed
Google Scholar
Magalhaes GO, Vacari AM, De Bortoli CP, Pomari AF, Polanczyk RA (2015) Interaction between Bacillus thuringiensis insecticides and Podisus nigrispinus (Hem.:Pentatomodae), a predator of Plutella xylostella (Lep.: Plutellidae). Neotropical Entomology 44(5):521–527
Article
CAS
PubMed
Google Scholar
Mahmoud, Basma, A. 1992. The role of some Spodoptera littoralis parasitoids and predators as distributers of bacterial and viral insecticides. M.Sc. Thesis, Fac.Agric., Cairo University, 105 pp.
Marchetti E, Alberghini S, Battisti A, Aquartini A, Dindo ML (2012) Susceptibility of adult Exorista larvarum to conventional and transgenic Bacillus thuringiensis galleriae toxin. Bull.Insectology 65(1):133–137
Google Scholar
Meissle M, Zund J, Waldburger M, Romeis J (2014) Development of Chrysoperla carnea on pollen from Bt transgenic and conventional maize. Sci.,Rep 4:5900
Article
CAS
Google Scholar
Mellet MA, Schoeman AS (2007) Effect of Bt-cotton on chrysopids, ladybird beetles and their prey: aphids and whiteflies. Indian J.exp. Biol 45:554–562
CAS
PubMed
Google Scholar
Men XY, Ge F, Liu XH, Yardim EN (2003) Diversity of arthropods communities in transgenic Bt-cotton and non-transgenic cotton agro-echosystems. Environ.Entomol. 32:270–275
Article
CAS
Google Scholar
Mendelshon M, Kough J, Vaituzis Z, Mathews K (2003) Are Bt crops safe? Nat.Biotechnol 21(9):1003–1009
Article
CAS
Google Scholar
Moar, W.J.; Eubanks, M.; Freeman, B. and Head, G. 2002. Effects of Bt-cotton on biological control agents in the Southeastern United States. 1st International Symposium on Biological Control of Arthropods, Honolulu, Hawaii, USA, Jan.14-18, 2002.
Mohan M, Sushil SN, Bhatt JC, Gujar GT, Gupta HS (2008) Synergistic interaction between sub-lethal doses of Bacillus thuringiensis and Campoletis chlorideae in managing Helicoverba armigera. Bio-Control 53(2):375–386
Google Scholar
Naranjo SE (2005) Long term assessment of the effects of transgenic Bt-cotton on the abundance of non-target arthropod natural enemies. Environ.Entomol. 34:1193–1210
Article
Google Scholar
Naranjo SE (2009) Impact of Bt-crops on non-target invertebrates and insecticide use patterns. CAB Rev.Perspect.Agric.Vet.Sci.Nutrit.Nat.Resource 4:11
Google Scholar
Nealis V, van Frankenhuyzen K (1990) Interactions between Bacillus thuringiensis and Apanteles fumiferanae. Canadian Entomologist 122:585–594
Article
Google Scholar
Oluwafemi AR, Wang X, Rao Q, Zhang H (2009) Effects of Bacillus thuringiensis on Habrobracon hebetor during combined biological control of Pludia interpunctella. Insect Science 16(5):409–416
Article
Google Scholar
Pellegrino E, Beddini S, Nuti M, Ercoli L (2018) Impact of genetically engineered maize on agronomic, environmental and toxicological traits: a meta-analysis of 21 years of field data. Sci.Rep. 8:3113
Article
PubMed
PubMed Central
CAS
Google Scholar
Pilcher CD, Rice ME, Obrycki JJ (2005) Impact of transgenic Bacillus thuringiensis-corn and crop technology on five non-target arthropods. Environ.Entomol. 34:1302–1316
Article
Google Scholar
Ponsard S, Guitterrez AP, Mills NJ (2002) Effect of Bt toxin, Cry1Ac, in transgenic cotton on the adult longevity of four heteropteran predators. Environ.Entomol. 31:1197–1205
Article
CAS
Google Scholar
Prutz G, Dettner K (2004) Effect of Bt corn leaf suspension on food consumption by Chilo partellus and life history parameters of its parasitoid Cotesia flavipes. Entoml.Exp.Appl. 111:179–186
Article
Google Scholar
Romeis J, Alvarez-Alfageme F, Bigler F (2012) Putative effects of Cry1Ab to larvae of Adalia bipunctata : reply to Hilbeck et al.,2012. Environ.Sci.Eur 24:18
Article
CAS
Google Scholar
Romeis J, Bigler F, Meissle M (2006) Transgenic crops expressing Bt toxins and biological control. Nat Biotechnol 24(1):63–71
Article
CAS
PubMed
Google Scholar
Romeis J, Naranjo SE, Meissle M, Shelton AM (2019) Genetically engineered crops help support conservation biological control. Biological Control 130:136–154
Article
Google Scholar
Rosenheim JA, Kaya HK, Ehler LE, Marois JJ, Jaffee BA (1995) Intraguild predation among biological control agents: theory and evidence. Biol. Control 5:303–335
Article
Google Scholar
Roy HE, Pell JK (2000) Interactions between entomopathogenic fungi and other natural enemies: implication for biological control. Biocontrol Sci. Technol 10:737–752
Article
Google Scholar
Roy HE, Pell JK, Clark SJ, Alderson PG (1998) Implication of predator foraging on aphid pathogen dynamics. J.Inverteb.Pathol. 71:236–247
Article
CAS
Google Scholar
Salles SMD, Pinto LMN, Pavani F, Mecado V, Fiuza LM (2015) Interactions between Bacillus thuringiensis proteins, Spodoptera fugiperda and Campoletis flvicincta. Bt. Research 6(5):1–10
Google Scholar
Sanders CJ, Pell JK, Poppy GM, Raybould A, Garcia-Alonso M, Schuler TH (2007) Host plant mediated effects of transgenic maize on the parasitoid Campoltis sonorensis. Biological Control 40:362–369
Article
Google Scholar
Schoenmaker, A.; Cusson, M. and Huyzen, F. 2011. Interactions between Bacillus thuringiensis var. kurstaki and parasitoids of late-instar larvae of the spruce budworm (Lep.:Tortricidae). Canadian J.Zoology,79(9) DOI:https://doi.org/10.1149/cjz-79-9-1697
Scorsetti, A.C., Pelizza, S., Fogel, M.N., Vianna, F. and Schneider, M.I. 2017. Interactions between the entomopathogenic fungus, Beauveria bassiana and the neotropical predator, Eriopis connexa (Coccinellidae): implications in biological control of pests. J. Plant Protection Research,57.
Sedaratian A, Fathipour Y, Talaei-Hassanloui R (2014) Deleterious effects of Bacillus thuringiensis on biological parameters of Habrobracon hebetor parasitizing Helicoverpa armigera. Bio-Control 59:89–98
Google Scholar
Sharma HC, Arora R, Pampapathy G (2007) Influence of transgenic cotton with Bacillus thuringiensis Cry1Ac gene on the natural enemies of Helicoverpa armigera. Bio Control 52:469–489
Google Scholar
Singh, D. and Mathew, I.L. 2015. The effect of B.thuringiensis and Bt transgenics on parasitoids during biological control. Inter.J.Pure Appl. Bioscience, 3(4): 123-131. (online at www.ijpab.com) .
Soberon, M.; Pardo, L.; Monoz, C.; Sanchez, J.; Gomez, I. and Porta, H. 2010. “Pore formation by toxins”, in Proteins: membrane binding and pore formation, edited by G. Andeluh and J. Lakey 2010:Chapter 11: 127-142.
Solmaz A, Shima R, Masoud T, Ahmed A, Alireza B, Reza T (2014) Interaction between Bt-transgenic cotton and the whitefly parasitoid Encarsia formosa. J. Plant Protection Res 54(3):272–278
Article
Google Scholar
Torres JB, Ruberson JR (2006) Interactions of Bt-cotton and the omnivorous big-eyed bug, Geocoris punctipes, a key predator in cotton fields. Biol.Control 39:47–57
Article
Google Scholar
Vojtech E, Poppy GM, Meissle M (2005) Effect of Bt-maize on Spodoptera littoralis and the parasitoid, Cotesia marginiventris. Transgenic Res 14(2):133–144
Article
CAS
PubMed
Google Scholar
Wallner WE, Dubois NR, Grinberg PS (1983) Alteration of parasitism by Rogas lymantriae in Bacillus thuringiensis stressed gypsy moth host. J.Econ. Entomol. 76:275–277
Article
Google Scholar
Wolfenbarger LL, Naranjo SE, Lundgren JG, Bitzer RJ, Watrud LS (2008) Bt- crops effects on functional guilds of non-target arthropods: a meta analysis. PLoS One 3(5):e2118. Published online 2008,May 7. https://doi.org/10.1371/journal.pone.0002118
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu KM, Guo YY (2005) The evolution of cotton pest management practices in China. Ann.Rev.Ent. 50:31–52
Article
CAS
Google Scholar
Yang YZ, Yu YS, Ren L, Shao YD, Qiand K, Myron PZ (2005) Possible in compatibility between transgenic cotton and parasitoids. Aust.J.Entomol 44:442–445
Article
Google Scholar
Yao XU, Kong-ming WU, Hao-bing LI, Jian LIU, Xue-xin C (2012) Effects of transgenic Bt-cotton on field abundance of non-target pests and predators in China. J. Integrative Agriculture 11(9):1493–1499
Article
Google Scholar
Zhao Y, Ma Y, Niu L, Ma W, Mannakkara A, Lei C (2013) Bt-cotton expressing Cry1Ac/Cry2Ab or Cry1Ac/epsps does not harm the predator, Proplaea japonica through its prey Aphis gossypii. Agric Ecosystems Environ 179:163–167
Article
CAS
Google Scholar