Abd-Elgawad MMM (2014) Spatial patterns of Tuta absoluta and heterorhabditid nematodes. Russian J Nematol 22:89–100
Google Scholar
Abd-Elgawad MMM (2016) Use of Taylor’s power law parameters in nematode sampling. Int J Pharm Tech Res 9(12):999–1004
Google Scholar
Abd-Elgawad MMM (2017a) Comments on the economic use of entomopathogenic nematodes against insect pests. Bull NRC 41(1):66–84
Google Scholar
Abd-Elgawad MMM (2017b) Status of entomopathogenic nematodes in integrated pest management strategies in Egypt. In: Abd-Elgawad MMM, Askary TH, Coupland J (eds) Biocontrol agents: entomopathogenic and slug parasitic nematodes. CAB Int, Wallingford, pp 473–501
Chapter
Google Scholar
Abd-Elgawad MMM (2017c) Toxic secretions of Photorhabdus and their efficacy against crop insect pests. In: Abd-Elgawad MMM, Askary TH, Coupland J (eds) Biocontrol agents: entomopathogenic and slug parasitic nematodes. CAB Int, Wallingford, pp 231–260
Chapter
Google Scholar
Abd-Elgawad MMM, Askary TH, Coupland J (eds) (2017) Biocontrol agents: entomopathogenic and slug parasitic nematodes. CAB Int, Wallingford, UK
Google Scholar
Anbesse S, Sumaya NH, Dörfler AV, Strauch O, Ehlers RU (2013) Stabilization of heat tolerance traits in Heterorhabditis bacteriophora through selective breeding and creation of inbred lines in liquid culture. BioControl 58:85–93
Article
Google Scholar
Arthurs S, Heinz KM, Prasifka JR (2004) An analysis of using entomopathogenic nematodes against above-ground pests. Bull Entomolog Res 94:297–306
Article
CAS
Google Scholar
Askary TH, Nermut J, Ahmad MJ, Ganai MA (2017) Future thrusts in expanding the use of entomopathogenic and slug parasitic nematodes in agriculture. In: Abd-Elgawad MMM, Askary TH, Coupland J (eds) Biocontrol agents: entomopathogenic and slug parasitic nematodes. CAB Int, Wallingford, pp 620–627
Chapter
Google Scholar
Bai X, Adams BJ, Ciche TA, Clifton S, Gaugler R, Kim KS, Spieth J, Sternberg PW, Wilson RK, Grewal PS (2013) A lover and a fighter: the genome sequence of an entomopathogenic nematode Heterorhabditis bacteriophora. PLoS One. 8(7):e69618. https://doi.org/10.1371/journal.pone.0069618
Article
CAS
PubMed
PubMed Central
Google Scholar
Baiocchi T, Abd-Elgawad MMM, Dillman AR (2017) Genetic improvement of entomopathogenic nematodes for enhanced biological control. In: Abd-Elgawad MMM, Askary TH, Coupland J (eds) Biocontrol agents: entomopathogenic and slug parasitic nematodes. CAB Int, Wallingford, pp 505–517
Chapter
Google Scholar
Bajc N, Držaj U, Trdan S, Laznik Ž (2017) Compatibility of acaricides with entomopathogenic nematodes (Steinernema and Heterorhabditis). Nematology 19:891–898
Article
CAS
Google Scholar
Bal HK, Acosta N, Cheng Z, Grewal PS, Hoy CW (2017) Effect of habitat and soil management on dispersal and distribution patterns of entomopathogenic nematodes. Appl Soil Ecol 121:48–59
Article
Google Scholar
Been TH, Schomaker CH (2013) Distribution patterns and sampling. In: Perry RN, Moens M (eds) Plant nematology, 2nd edn. CAB Int, Wallingford, pp 331–358
Chapter
Google Scholar
Campos-Herrera R (ed) (2015) Nematode pathogenesis of insects and other pests: ecology and applied technologies for sustainable plant and crop protection. Springer Int Publishing, Zurich, Switzerland
Google Scholar
Campos-Herrera R, Stuart RJ, Pathak E, El-Borai FE, Duncan LW (2019) Temporal patterns of entomopathogenic nematodes in Florida citrus orchards: evidence of natural regulation by microorganisms and nematode competitors. Soil Biol Biochem 128:193–204
Article
CAS
Google Scholar
Da Silva OS, Prado GR, Da Silva JLR, Silva CE, Da Costa M, Heermann R (2013) Oral toxicity of Photorhabdus luminescens and Xenorhabdus nematophila (Enterobacteriaceae) against Aedes aegypti (Diptera: Culicidae). Parasitol Res 112:2891–2896
Article
PubMed
Google Scholar
Duncan LW, Phillips MS (2009) Sampling root-knot nematodes. In: Perry RN, Moens M, Starr JL (eds) Root-knot nematodes. CAB Int, St. Albans, UK, pp 275–300
Chapter
Google Scholar
Dzięgielewska M, Skwiercz A (2018) The influence of selected abiotic factors on the occurrence of entomopathogenic nematodes (Steinernematidae, Heterorhabditidae) in soil. Polish J Soil Sci LI/1: 11-21. DOI: https://doi.org/10.17951/pjss/2018.51.1.11
El-Sadawy HA, Elnamaky AH, Elsayed EH, Abdelmaguid BB, Ayaad TH, Ahmed AM (2018) Silver nanoparticles enhance the larvicidal toxicity of Photorhabdus and Xenorhabdus bacterial toxins: an approach to control the filarial vector, Culex pipiens. Tropic Biomed 35(2):392–407
Google Scholar
El-Sadawy HA, El-Shazly A, El-Khateeb MM (2008a) Histopathological studies of hard tick Hyalomma dromedarii infected by entomopathogenic nematodes. J. Entomol 5(2):62–76
Article
Google Scholar
El-Sadawy HA, Zayed AA, El-Shazly A (2008b) Characterization of midgut and salivary gland proteins of Hyalomma dromedarii females controlled by entomopathogenic nematodes. Pakistan J Biol Sci 11(4):508–516
Article
CAS
Google Scholar
Ffrench-Constant RH, Dowling A, Waterfield NR (2007) Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon 49:436–451
Article
CAS
PubMed
Google Scholar
Gaugler R (1997) Alternative paradigms for commercializing biopesticides. Phytoparasitica 25(3):179–181
Article
Google Scholar
Georgis R, Koppenhöfer AM, Lacey LA, Belair G, Duncan LW, Grewal PS, Samish M, Tan L, Torr P, van Tol RWHM (2006) Successes and failures in the use of parasitic nematodes for pest control. Biol Cont 38:103–123
Article
Google Scholar
Glazer I (2015) Improvement of entomopathogenic nematodes: a genetic approach. In: Campos-Herrera R (ed) Nematode pathogenesis of insects and other pests: ecology and applied technologies for sustainable plant and crop protection. Springer Int Publishing, Zurich, Switzerland, pp 29–55
Chapter
Google Scholar
Hashmi S, Hashmi G, Glazer I, Gaugler R (1998) Thermal response of Heterorhabditis bacteriophora transformed with the Caenorhabditis elegans hsp70 encoding gene. J Exper Zool 281:164–170
Article
CAS
Google Scholar
Heve WK, El-Borai FE, Johnson EG, Carrillo D, Crow WT, Duncan LW (2018) Responses of Anastrepha suspensa, Diachasmimorpha longicaudata, and sensitivity of guava production to Heterorhabditis bacteriophora in fruit fly integrated pest management. J Nematol 50(3):261–272
Article
PubMed
PubMed Central
Google Scholar
Hussaini SS (2017) Entomopathogenic nematodes: ecology, diversity and geographical distribution. In: Abd-Elgawad MMM, Askary TH, Coupland J (eds) Biocontrol agents: entomopathogenic and slug parasitic nematodes. CAB Int, Wallingford, pp 88–142
Chapter
Google Scholar
Kaya H, Gaugler R (1993) Entomopathogenic nematodes. Ann Rev Entomol 38:181–206
Article
Google Scholar
Koppenhöfer AM, Grewal PS (2005) Compatibility and interactions with agrochemicals and other biocontrol agents. In: Grewal PS, Ehlers R-U, Shapiro-Ilan D (eds) Nematodes as biocontrol agents. CAB Int, Wallingford, pp 363–381
Chapter
Google Scholar
Lacey LA, Georgis R (2012) Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. J Nematol 44:218–225
PubMed
PubMed Central
Google Scholar
Laznik Ž, Trdan S (2014) The influence of insecticides on the viability of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) under laboratory conditions. Pest Manage Sci 70(5):784–789
Article
CAS
Google Scholar
Laznik Ž, Trdan S (2017) Influence of herbicides on the viability of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae). Int J Pest Manage 63(2):105–111
Article
CAS
Google Scholar
Laznik Ž, Vidrih M, Trdan S (2012) The effects of different fungicides on the viability of entomopathogenic nematodes Steinernema feltiae (Filipjev), S. carpocapsae Weiser, and Heterorhabditis downesi Stock, Griffin & Burnell (Nematoda: Rhabditida) under laboratory condition. Chilean J Agric Res 72(1):62–67
Google Scholar
Lulamba TE, Green E, Serepa-Dlamini MH (2018) Entomopathogenic nematodes, potential industrial pest control agents: a South African perspective. J Entomol Nematol 11(1):1-12.
Nguyen KB, Smart GC Jr (1990) Steinernema scapterisci n. sp. (Rhabditida: Steinernematidae). J Nematol 22:187–199
CAS
PubMed
PubMed Central
Google Scholar
Perry JN (1995) Spatial analysis by distance indices. J Anim Ecol 64:303–314
Article
Google Scholar
Půža V, Mráček Z, Nermu J (2016) Novelties in pest control by entomopathogenic and mollusc-parasitic nematodes. In: Gill HK, Goyal G (eds) Integrated pest management (IPM): environmentally sound pest management. Intech Open. https://doi.org/10.5772/64578, pp 71-102
Google Scholar
Shapiro-Ilan DI, Bock CH, Hotchkiss MW (2014b) Suppression of pecan and peach pathogens on different substrates using Xenorhabdus bovienii and Photorhabdus luminescens. Biol Cont 77:1–6
Article
Google Scholar
Shapiro-Ilan DI, Han R, Qiu X (2014a) Production of entomopathogenic nematodes. In: Morales-Ramos J, Rojas G, Shapiro-Ilan DI (eds) Mass production of beneficial organisms: invertebrates and entomopathogens. Academic Press, San Diego, pp 321–356
Chapter
Google Scholar
Shapiro-Ilan DI, Hazir S, Glazer I (2017) Basic and applied research: entomopathogenic nematodes. In: Lacey LA (ed) Microbial agents for control of insect pests: from discovery to commercial development and use. Academic Press, Amsterdam, pp 91–105
Chapter
Google Scholar
Shehata IE, Hammam MMA, El-Borai FE, Duncan LW, Abd-Elgawad MMM (2019) Comparison of virulence, reproductive potential, and persistence among local Heterorhabditis indica populations for the control of Temnorhynchus baal (Reiche & Saulcy) (Coleoptera: Scarabaeidae) in Egypt. Egypt J Biol Pest Cont 29:32 https://doi.org/10.1186/s41938-019-0137-5
Article
Google Scholar
Spiridonov SE, Moens M, Wilson MJ (2007) Fine scale spatial distributions of two entomopathogenic nematodes in a grassland soil. Appl Soil Ecol 37:192–201
Article
Google Scholar
Stevens G, Lewis E (2017) Status of entomopathogenic nematodes in integrated pest management strategies in the USA. In: Abd-Elgawad MMM, Askary TH, Coupland J (eds) Biocontrol agents: entomopathogenic and slug parasitic nematodes. CAB Int, Wallingford, pp 289–311
Chapter
Google Scholar
Stuart RJ, Barbercheck ME, Grewal PS (2015) Entomopathogenic nematodes in the soil environment: distributions, interactions and the influence of biotic and abiotic factors. In: Campos-Herrera R (ed) Nematode pathogenesis of insects and other pests: ecology and applied technologies for sustainable plant and crop protection. Springer Int Publishing, Zurich, Switzerland, pp 97–138
Chapter
Google Scholar
Stuart RJ, Barbercheck ME, Grewal PS, Taylor RAJ, Hoy CW (2006) Population biology of entomopathogenic nematodes: concepts, issues, and models. Biol Cont 38:80–102
Article
Google Scholar
Taylor RAJ (1999) Sampling entomopathogenic nematodes and measuring their spatial distribution. Pp. 43-60 In: Gwynn RL, Smits PH, Griffin C, Ehlers R-U, Boemare N, Masson J-P (eds) Application and persistence of entomopathogenic nematodes. European Commission (EUR 18873 EN).
Vellai T, Molnar A, Laktos L, Banfalvi Z, Fodor A, Saringer G (1999) Transgenic nematodes carrying a cloned stress resistance gene from yeast. In: Glazer I, Richardson P, Boemare N, Coudert F (eds) Survival of entomopathogenic nematodes. Office for Official Publications of the European Communities, Luxembourg, pp 105–119
Google Scholar
Wilson M, Gaugler R (2004) Factors limiting short-term persistence of entomopathogenic nematodes. J Appl Entomol 128(4):250–253
Article
Google Scholar
Wilson MJ, Lewis EE, Yoder F, Gaugler R (2003) Application pattern and persistence of the entomopathogenic nematode Heterorhabditis bacteriophora. Biol Cont 26:180–188
Article
Google Scholar