Abass AA, Salem HM, Abd El Hamid NA, Gabarty A, Embaby DM (2017) Effects of gamma irradiation on the biological activity of the cotton leaf worm, Spodoptera littoralis (Boisd.). J Nucl Techn Appl Sci 5(1):19–26
Article
Google Scholar
Abd El-Razik MAA, Mostafa ZMS (2013) Joint action of two novel insecticides mixtures with insect growth regulators, synergistic compounds and conventional insecticides against Spodoptera littoralis (Boisd.) larvae. Amer J Bioch Mol Biol 3(4):369–378
Abul Nasr S (1956) Polyhedrosis virus disease on cotton leaf worm Spodoptera litura. Bull Entom Soc Egypt, Econ Ser 40:321–332
Google Scholar
Armenta R, Martínez A, Chapman T, Magallanes R, Goulson D, Caballero P, Cave R, Cisneros J, Valle J, Castillejos V, Penagos D, Garcia LF, Williams T (2003) Impact of a nucleopolyhedrovirus bioinsecticide and selected synthetic insecticides on the abundance of insect natural enemies on maize in southern Mexico. J Econ Entomol 96(3):649–661
Article
CAS
Google Scholar
Armes NJ, Wightman JA, Jadhav DR, Rangrarao GV (1997) Status of insecticide resistance in Spodoptera litura in Andhra Pradesh, Indian. Pestic Sci 50(6):240–248
Article
CAS
Google Scholar
Beek NV, Davis DC (2007) In: Murhammer DW (ed) Baculovirus and insect cell expression protocols. Methods in molecular biology. Humana Press, Totowa, pp 367–378
Google Scholar
Black BC, Brennan LA, Dierks PM, Gard IE (1997) Commercialization of baculovirus pesticides. In: Miller LK (ed) The Baculoviruses. Plenum, New York, pp 341–387
Chapter
Google Scholar
Carpenter JE, Young JR, Sparks AN (1986) Fall army worm (Lepidoptera: Noctuidae) comparison of inherited deleterious effects in progeny from irradiated males and females. J Econ Entomol 79(1):46–49
Article
Google Scholar
Chen MH, Sheng J, Hind G, Handa A, Citovsky V (2000) Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. EMBO J 19:913–920
Article
CAS
Google Scholar
Cherry AJ, Parne MA, Grzywacz D, Jones KA (1997) The optimization of in vivo nuclear polyhedrosis virus production in Spodoptera exempta (Walker) and Spodoptera exigua. J Invertebr Pathol 70:50–58
Article
Google Scholar
Elvira S, Williams T, Caballero P (2010) Juvenile hormone analog technology: effects on larval cannibalism and the production of Spodoptera exigua (Lepidoptera: Noctuidae) nucleopolyhedrovirus. J Econ Entomol 103:577–582
Article
Google Scholar
Feinendegen LE (2005) Evidence for beneficial low level radiation effects and radiation hormesis. Br J Radiol 78:3–7
Article
CAS
Google Scholar
Gupta RK, Raina JC, Arora RK, Bali K (2007) Selection and field effectiveness of nucleopolyhedrovirus isolates against Helicoverpa armigera (Hubner). Int J Virol 3(2):45–59
Article
CAS
Google Scholar
Lasa R, Caballero P, Williams T (2007) Juvenile hormone analogs greatly increase the production of a nucleopolyhedrovirus. Biol Control 41:389–396
Article
CAS
Google Scholar
Lauzon CR and Potter SE (2012) Description of the irradiated and non-irradiated midgut of Ceratitis capitata Wiedemann (Diptera: Tephritidae) and Anastrepha ludens Loew (Diptera: Tephritidae) used for sterile insect technique
Google Scholar
Liao ZH, Kuo TC, Shih CW, Tuan SJ, Kao YH, Huang RN (2016) Effect of juvenile hormone and pyriproxyfen treatments on the production of Spodoptera litura nuclear polyhedrosis virus. Entomol Exp Appl 161(2):112–120
Article
CAS
Google Scholar
Monobrullah M, Shankar U, Bharti P, Gupta RK, Kaul V (2007) Effect of host plant on the infectivity of SpltMNPV to Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) larvae. J Asia Pac Entomol 10:151–155
Article
Google Scholar
Moskalev AA, Plyusnina EN, Shaposhnikov MV (2011) Radiation hormesis and radio adaptive response in Drosophila melanogaster flies with different genetic backgrounds: the role of cellular stress-resistance mechanisms. Biogerontology 12(3):253–263
Article
CAS
Google Scholar
Narayanan K, Jayaraj S (2002) Mass production of polyhedral occlusion bodies of NPV of Helicoverpa armigera in relation to dose, age and larval weight. Indian J Exp Biol 40:846–849
CAS
PubMed
Google Scholar
Ramakrishnan N, Saxena VS, Dhingra S (1984) Insecticide resistance in the population of Spodoptera litura (Fb.) in Andhra Pradesh. Pesticides 18:23–27
CAS
Google Scholar
Rios-Velasco CG, Gallegos-Morales D, Berlanga-Reyes J, Cambero Campos A, Romo-Chacón J (2012) Mortality and production of occlusion bodies in Spodptera frugiperda larvae (Lepidoptera: Noctuidae) treated with Nucleopolyhedrovirus. Fla Entomol 95(3):752–757
Article
Google Scholar
Seong KM, Kim CS, Seo SW, Jeon HY, Lee BS, Nam SY (2011) Genome-wide analysis of low-dose irradiated male Drosophila melanogaster with extended longevity. Biogerontology 12(2):93–107
Article
Google Scholar
Seth RK, Sehgal SS (1993) Partial sterilizing radiation dose-effect on the F1 progeny of Spodoptera litura (Fabr.). Grow Bioenergy Rep Comp 3:427–440
Google Scholar
Shorey H, Hale RL (1965) Mass rearing of the larvae of nine Noctuidae species on a simple artificial medium. J Econ Entomol 58:522–524
Article
Google Scholar
Steel RGD, Torrie JH (1960) Principles and procedures of statistics. McGraw-Hill Book Company, New York, p 481
Google Scholar
Subramanian S, Santharam G, Sathiah N, Kennedy JS, Rabindra RJ (2006) Influence of incubation temperature on productivity and quality of Spodoptera litura nucleopolyhedrovirus. Biol Control 37:367–374
Article
Google Scholar
Yousef WMA (2001) Efficiency of radiation and storage methods on Gibbium psylloides (zemp.) and Plodia interpunctella (Hbn.) Ph.D. Thesis, Cairo Unv., p 161
Google Scholar
Zhikrevetskaya S, Peregudova D, Danilov A, Plyusnina E, Krasnov G, Dmitriev A, Kudryavtseva A, Shaposhnikov M, Moskalev A (2015) Effect of low doses (5-40 Gy) of gamma-irradiation on lifespan and stress-related genes expression profile in Drosophila melanogaster. PLoS One 10(8):1–19 e0133840
Article
Google Scholar