Ahamed A, Ahring BK (2011) Production of hydrocarbon compounds by endophytic fungi Gliocaldium sp. grown on cellulose. Bioresour Technol 102:9718–9722
Article
PubMed
CAS
Google Scholar
Atmosukarto I, Castillo U, Hess W, Sears J, Strobel G (2005) Isolation and characterization of Muscodor albus; a volatile antibiotic producing fungus. Plant Sci 169:854–861
Article
CAS
Google Scholar
Azeez LA, Muid S, Hasnul BM (2016) Identification of volatile secondary metabolites from an endophytic microfungus Aspergillus nomius KUB105. Malaysian J Anal Sci 20(4):751–759
Article
Google Scholar
Bäck J, Aaltonen H, Hellen H, Kajos MK et al (2010) Variable emissions of microbial volatile organic compounds (MVHCs) from root-associated fungi isolated from Scots pine. Atmos Environ 44:3651–3659
Article
CAS
Google Scholar
Bacon CW, White JW (2000) Microbial endophytes. Marcel Dekker, New York
Google Scholar
Banerjee D, Pandey A, Jana M, Strobel GA (2014) Muscodoralbus MOW12 an endophyte of Piper nigrum L. (Piperacae) collected from North east India produces volatile antimicrobials. Indian J Microbiol 54:27–32
Article
PubMed
CAS
Google Scholar
Banerjee D, Strobel GA, Booth E, Geary B et al (2010) An endophytic Myrothecium inundatum producing volatile organic compounds. Mycosphere 1:229–240
Google Scholar
Bennett JW, Inamdar AA (2015) Are some fungal volatile organic compounds (VHCs) mycotoxins? Toxins 7:3785–3804
Article
PubMed
PubMed Central
CAS
Google Scholar
Booth E, Strobel G, Knighton B, Sears J et al (2011) A rapid column technique for trapping and collecting of volatile fungal hydrocarbons and hydrocarbon derivatives. Biotechnol Lett 33:1963–1972
Article
PubMed
CAS
Google Scholar
Camp AR, Dillard HR, Smart CD (2008) Efficacy of Muscodoralbus for the control of Phytophthora blight of sweet pepper and butternut squash. Plant Dis 92:1488–1492
Article
Google Scholar
Campos VP, Canuto de Pinho RS, Freire ES (2010) Volatiles produced by interacting microorganisms potentially useful for the control of plant pathogens. Ciêncagrotec 34:525–535
CAS
Google Scholar
Chen JL, Sun SJ, Miao CP, Wu K et al (2016) Endophytic Trichoderma gamsii YIM PH30019: a promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng. J Ginseng Res 40:315–324
Article
PubMed
Google Scholar
Daisy BH, Strobel GA, Castillo U, Ezra D et al (2002) Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology 148:3737–3741
Article
PubMed
CAS
Google Scholar
Dennis C, Webster J (1971) Antagonistic properties of species groups of Trichoderma: II. Production of volatile antibiotics. Trans Br Mycol Soc 57:41–48
Article
CAS
Google Scholar
Deshmukh SK, Gupta MK, Prakash V, Saxena S (2018) Endophytic fungi: a source of potential antifungal. compounds. J fungi 4(77):1–42.
Ezra D, Jasper J, Rogers T, Knighton B et al (2004) Proton- transfer reaction-mass spectroscopy as technique to measure volatile emissions of Muscodor albus. Plant Sci 166:1471–1477
Article
CAS
Google Scholar
Fialho MB, Duarte de Moraes MH, Tremocoldi AR, Pascholati SF (2011) Potential of antimicrobial volatile compounds to control Sclerotinia sclerotiorum in bean seeds. Pesq Agropec Bras 46:137–142
Article
Google Scholar
Firakova S, Sturdikova M, Muckova M (2007) Bioactive secondary metabolites produced by microorganisms associated with plants. Biologia 62:251–257
Article
CAS
Google Scholar
Gabler FM, Fassel R, Mercier J, Smilanick JL (2006) Influence of temperature, inoculation interval, and dosage on biofumigation with Muscodor albus to control post harvest grey mold on grapes. Plant Dis 90:1019–1025
Article
Google Scholar
Gabler FM, Mercier J, Jimenez JI, Smilanick JL (2010) Integration of continuous biofumigation with Muscodo ralbus with pre-cooling fumigation with ozone or sulphur dioxide to control post harvest gray mold of table grapes. Postharvest Biol Technol 55:78–84
Article
CAS
Google Scholar
Garbeva P, Gera Hol WH, Termorshuizen AJ, Kowalchuk GA, Boer W (2011) Fungistasis and general soil biostasis. Soil Biol Biochem 43(3):469–477
Article
CAS
Google Scholar
Ghimire SR, Charlton ND, Bell JD, Krishnamurthy YL, Craven KD (2011) Biodiversity of fungal endophyte communities inhabiting switchgrass (Panicum virgatum L.) growing in the native tall grass prairie of northern Oklahoma. Fungal Divers 47:19–27
Article
Google Scholar
Gianoulis TA, Griffin MA, Spakowicz DJ, Dunican BF et al (2012) Genomic analysis of the hydrocarbon-producing, cellulolytic, endophytic fungus Ascocoryne sarcoides. PLOS Genet 8:1002558
Article
CAS
Google Scholar
Goates BJ, Mercier J (2011) Control of common bunt of wheat under field conditions with the biofumigant fungus Muscodor albus. Eur J Plant Pathol. https://doi.org/10.1007/s10658-011–9817-z
González MC, Anaya AL, Glenn AE, Macías-Rubalcava MLet al. (2009) Muscodor yucatanensis, a new endophytic ascomycete from Mexican chakah, Bursera simaruba. Mycotaxon 110:363–372
Article
Google Scholar
Griffin MA, Spakowicz DJ, Gianoulis TA, Strobel SA (2010) Volatile organic compound production by organisms in the genus Ascocoryne and a re-evaluation of mycodiesel production by NRRL 50072. Microbiology 156:3814–3829
Article
PubMed
CAS
Google Scholar
Grimme E, Zidack N (2007) Comparison of Muscodor albus volatiles with a bio rational mixture for control of seedling diseases of sugar beet and root-knot nematode on tomato. Plant Dis 91:220–225
Article
CAS
Google Scholar
Grimme E, ZIidack NK, Sikora RA, Strobel GA, Jacobson BJ (2007) Comparison of Muscodor albus volatiles with abiorational mixture for control of seedling diseases of sugarbeet and root-knot nematode on tomato. Plant Dis 91:220–225
Article
CAS
Google Scholar
Hassan R, Strobel GA, Booth E, Knighton Bet al. (2012) Modulation of volatile organic compound formation in the mycodiesel producing endophyte- Hypoxylon sp. CI-4. Microbiology 158:465–473
Article
CAS
Google Scholar
Hassan SR, Strobel GA, Geary B, Sears J (2013) An endophytic Nodulisporium sp. from Central America producing volatile organic compounds with both biological and fuel potential. J Microbiol Biotechnol 23:29–35
Article
CAS
Google Scholar
Jamalizadeh M, Etebarian HR, Aminian H, Alizadeh A (2011) A review of mechanisms of action of biological control organisms against post-harvest fruit spoilage. EPPO Bull 41:65–71
Article
Google Scholar
Kai M, Haustein M, Molina F, Petri A et al (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81:1001–1012
Article
PubMed
CAS
Google Scholar
Kanchiswamy CN, Malnoy M, Maffei ME (2015) Chemical diversity of microbial volatiles and their potential for plant growth and productivity. https://doi.org/10.3389/fpls.2015.00151
Kharwar RN, Mishra A, Gond SK, Stierle A, Stierle D (2011) Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep 28:1208–1228
Article
PubMed
CAS
Google Scholar
Kline D, Allan SA, Bernier UR, Welch CH (2007) Evaluation of the enantiomers of 1-octen-3-ol and 1-octyn-3-ol as attractants for mosquitoes associated with a freshwater swamp in Florida, U.S.A. Med Vet Entomol 21:323–331
Article
PubMed
CAS
Google Scholar
Korpi A, Jarnberg J, Pasanen AL (2009) Microbial volatile compounds. Crit Rev Toxicol 39:139–193
Article
PubMed
CAS
Google Scholar
Koshino H, Togia S, Yoshihara T, Sakamura S et al (1989) New fungitoxic sesquiterpenoids, chokols A-G, from stromata of Epichloe typhina and absolute configuration of chokol. Agric Biol Chem 53:789–790
Article
CAS
Google Scholar
Kramer R, Abraham WR (2012) Volatile sesquiterpenes from fungi: what are they good for? Phytochem Rev 11:5–37
Article
CAS
Google Scholar
Kudalkar P, Strobel G, Riyaz Ul-Hassan S, Geary B, Sears J (2012) Muscodor sutura, a novel endophytic fungus with volatile antibiotic activities. Mycoscience 53:319–325
Article
CAS
Google Scholar
Kumar S, Kaushik N (2013) Endophytic fungi isolated from oil seed crop Jatropha curcas produces oil and exhibit antifungal activity. PLOS ONE 8:1–8
Article
Google Scholar
Lacey L, Horton D, Jones DC, Headrick HL et al (2009) Efficacy of the biofumigation fungus Muscodor albus (Ascomycota: Xylariales) for control of codling moth (Lepidoptera: Tortricidae) in simulated storage conditions. J Econ Entomol 102:43–49
Article
PubMed
CAS
Google Scholar
Lee SO, Kim HY, Choi GJ, Lee HB et al (2009) Mycofumigation with Oxyporus latemarginatus EF069 for control of postharvest apple decay and Rhizoctonia root rot on moth orchid. J Appl Microbiol 106:1213–1219
Article
PubMed
CAS
Google Scholar
Liarzi O, Bar E, Lewinsohn E, Ezra D (2016) Use of endophytic fungus Daldinia cf concentrica and its volatiles as biocontrol agents. PLOS One 11(12):e0168242
Article
PubMed
PubMed Central
CAS
Google Scholar
Lutz MP, Wenger S, Maurhofer M, Defago G, Duffy B (2004) Signaling between bacterial and fungal biocontrol agents in a strain mixture. FEMS Microbiol Ecol 48:447–455
Article
PubMed
CAS
Google Scholar
Matysik S, Herbarth O, Mueller A (2009) Determination of microbial volatile organic compounds (MVHCs) by passive sampling onto charcoal sorbents. Chemosphere 76:114–119
Article
PubMed
CAS
Google Scholar
Mburu DM, Ndung’u MW, Maniania NK, Hassanali A (2011) Comparison of volatile blends and gene sequences of two isolates of Metarhizium anisopliae of different virulence and repellence towards the termite Macrotermes michaelseni. J Exp Biol 214:956–962
Article
PubMed
CAS
Google Scholar
Mends MT, Yu E, Strobel GA, Hassan SRU et al (2012) An endophytic Nodulisporium sp. producing volatile organic compounds having bioactivity and fuel potential. Journal of Petroleum and Environmental. Biotechnol 3:3
Google Scholar
Mercier J, Jiménez JI (2009) Demonstration of the biofumigation activity of Muscodor albus against Rhizoctonia solani in soil and potting mix. BioControl 54:797–805
Article
CAS
Google Scholar
Mercier J, Manker D (2005) Biocontrol of soil-borne diseases and plant growth enhancement in greenhouse soilless mix by the volatile producing fungus Muscodor albus. Crop Prot 24:355–362
Article
Google Scholar
Mitchell AM, Strobel GA, Moore E, Robison R, Sears J (2010) Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus. Microbiol 156:270–277
Article
CAS
Google Scholar
Mitchell M, Strobel GA, Hess WM, Vargas PN, Ezra D (2008) Muscodor crispans, a novel endophyte from Ananas ananassoides in the Bolivian Amazon. Fungal Divers 31:37–43
Google Scholar
Morath SU, Hung R, Bennett JW (2012) Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biol Rev 26:73–83
Article
Google Scholar
Muller A, Faubert P, Hagen M, Zu Castell W et al (2013) Volatile profiles of fungi–chemotyping of species and ecological functions. Fungal Genet Biol 54:25–33
Article
PubMed
CAS
Google Scholar
Newcombe G, Shipunov A, Eigenbrode S, Raghavendra AK et al (2009) Endophytes influence protection and growth of an invasive plant. Commun Integr Biol 2:29–31
Article
PubMed
PubMed Central
Google Scholar
Newman DJ, Cragg GM (2015) Endophytic and epiphytic microbes as sources of bioactive agents. Front Chem 3:34
Article
PubMed
PubMed Central
CAS
Google Scholar
Oliveira FC, Barbosa FG, Mafezoli J, Oliveira MCF et al (2015) Volatile organic compounds from Filamentous fungi: a chemotaxonomic tool of the Botrysphaeriaceae family. J Braz Chem Soc 26(11):2189–2194
CAS
Google Scholar
Ortiz BLS, Sanchez Fernandez RE, Duarte G, Lappe-Oliveras P, Macias Rubalcava ML (2016) Antifungal, anti-oomycete and phytotoxic effects of volatile organic compounds from the endophytic fungus Xylaria sp. strain PB3f3 isolated from Haematoxylon brasiletto. J Appl Microbiol 120:1313–1325
Article
CAS
Google Scholar
Pańka D, Piesik D, Jeske M, Baturo-Cieśniewska A (2013) Production of phenolics and the emission of volatile organic compounds by perennial ryegrass (Lolium perenneL.)/Neotyphodium lolii association as a response to infection by Fusarium poae. J Plant Physiol 170:1010–1019
Article
PubMed
CAS
Google Scholar
Park MS, Ahn J, Choi GJ, Choi YH et al (2010) Potential of the volatile-producing fungus Nodulisporium sp. CF016 for the control of postharvest diseases of apple. Plant Pathol J 26:253–259
Article
Google Scholar
Pimenta RS, Moreirada Silva JF, Buyer JS, Janisiewicz WJ (2012) Endophytic fungi from plums (Prunus domestica) and their antifungal activity against Monilinia fructicola. J Food Prot 75:1883–1889
Article
PubMed
CAS
Google Scholar
Redman S, Sheehan KB, Stuot RG, Rodrigues RJ, Henson JM (2002) Thermotolerance conferred to plnt host and fungal endophyte during mutualistic symbiosis. Science 298:1581
Article
PubMed
CAS
Google Scholar
Riga E, Lacey L, Guerra N (2008) Muscodor albus, a potential biocontrol agent against plant-parasitic nematodes of economically important vegetable crops in Washington State, USA. Biol Control 45:380–385
Article
Google Scholar
Rodrigues RJ, Henson J, Van Volkenburgh E, Hoy M et al (2008) Stress tolerance in plants via habitat adapted symbiosis. ISME 2:404–416
Article
Google Scholar
Rohlfs M, Obmann BR, Petersen R (2005) Competition with filamentous fungi and its implication for a gregarious lifestyle in insects living on ephemeral resources. Ecol Entomol 30:556–563
Article
Google Scholar
Rubalcava ML, Hernandez-Bautista H, Oropeza F, Duarte Get al. (2010) Allelo chemical effects of volatile compounds and organic extracts from Muscodor yucatanensis, a tropical endophytic fungus from Bursera simaruba. J Chem Ecol 36:1122–1131
Article
CAS
Google Scholar
Saxena S, Meshram V, Kapoor N (2015) Muscodortigerii sp. nov.-Volatile antibiotic producing endophytic fungus from the Northeastern Himalayas. Microbiol 65:47
CAS
Google Scholar
Schalchli H, Tortella GR, Rubilar O, Parra L et al (2016) Fungal volatiles: an environmentally friendly tool to control pathogenic microorganisms in plants. Crit Rev Biotechnol 36(1):144–152
Article
PubMed
CAS
Google Scholar
Schmidt R, Cordovez V, de Boer W, Raaijmakers J, Garbeva P (2015) Volatile affairs in microbial interactions. ISME J 9:2329–2335
Article
PubMed
PubMed Central
CAS
Google Scholar
Schulz B, Boyle C, Draegher C, Rommert AK, Krohn K (2002) Endophytic fungi: source of novel biologically active secondary metabolites. Mycol Res 9:996–1004
Article
CAS
Google Scholar
Senthilmohan ST, Mcewan MJ, Wilson PF, Milligan DB, Freeman CG (2001) Real time analysis of breath volatiles using SIFT-MS in cigarette smoking. Redox Rep 6:185–187.
Shankar Naik B, Shashikala J, Krishnamurthy YL (2006) Study on the diversity of endophytic communities from rice (Oryza sativa L.) and their antagonistic activities in vitro. Microbiol Res 3:290–296
Google Scholar
Shaw JJ, Berbasova T, Sasaki T, Jefferson-George K et al (2015) Identification of a fungal 1,8-CineoleSynthase from Hypoxylon sp. with common specificity determinants to the plant synthases. J BiolChem 290(13):8511–8526
CAS
Google Scholar
Singh SK, Strobel GA, Knighton B, Geary B et al (2011) An endophytic Phomopsis sp. possessing bioactivity and fuel potential with its volatile organic compounds. Microb Ecol 61:729–739
Article
PubMed
Google Scholar
Song C, Hsu C, Mochida I (2000) Chemistry of Diesel Fuels. Taylor and Francis, NY
Google Scholar
Stinson M, Ezra D, Hess WM, Sears J, Strobel G (2003) An endophytic Gliocladium of Eucryphia cordifolia producing selective volatile antimicrobial compounds. Plant Sci 165:913–922
Article
CAS
Google Scholar
Stoppacher N, Kluger B, Zeilinger S, Krska R, Schumacher R (2010) Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviridae by HS-SPMS-GC-MS. J Microbiol Methods 81:187–193
Article
PubMed
CAS
Google Scholar
Strobel G (2006) Muscodoralbus and its biological promise. J Ind Microbiol Biotechnol 33:514–522
Article
PubMed
CAS
Google Scholar
Strobel GA (2011) Muscodor species-endophytes with biological promise. Phytochem Rev 10:165–172
Article
CAS
Google Scholar
Strobel GA (2014) The story of mycodiesel. Curr Opin Microbiol 19:52–58
Article
PubMed
CAS
Google Scholar
Strobel GA, Dirkse E, Sears J, Markworth C (2001) Volatile antimicrobials from Muscodoralbus a novel endophytic fungus. Microbiol 147:2943–2950
Article
CAS
Google Scholar
Strobel GA, Knighton B, Kluck K, Ren Y et al (2008) The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). Microbiol 154:3319–3328
Article
CAS
Google Scholar
Strobel G, Tomshek A, Geary B, Spackowicz D, Strobel S, matter S, Mann R (2010) Endophyte strain NRRL 50072 producing volatile organics is a species of Ascocoryne. Mycology 1(3):187–194.
Strobel GA, Singh SK, Hassan RUL, Mitchell A et al (2011) An endophytic/pathogenic Phoma sp. from creosote bush producing biologically active volatile compounds having fuel potential. FEMS Microbiol Lett 320:87–94
Article
PubMed
CAS
Google Scholar
Suwannarach N, Kumla J, Bussaban B, Nuangmek W, Matsui K, Lumyong S (2013) Biofumigation with the endophytic fungus Nodulisporium spp. CMU-UPE34 to control post harvest decay of Citrus fruit. Crop Prot 45:63–70
Article
CAS
Google Scholar
Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459
Article
PubMed
CAS
Google Scholar
Tao MH, Yan J, Wei XY, Li DL et al (2011) A novel sesquiterpene alcohol from Fimetariella rabenhorstii, an endophytic fungus of Aquilaria sinensis. Nat Prod Commun 6:763–766
PubMed
CAS
Google Scholar
Thakeow P, Angeli S, Weißbecker B, Schutz S (2008) Antennal and behavioral response of Cis boleti to fungal odor of Trametes gibbosa. Chem Senses 33:379–387
Article
PubMed
CAS
Google Scholar
Ting ASY, Mah SW, Tee CS (2010) Identification of volatile metabolites from fungal endophytes with biocontrol potential towards Fusarium oxysporum F. sp. cubense Race 4. Am J Agric Biol Sci 5:177–182
Article
CAS
Google Scholar
Tomsheck AR, Strobel GA, Booth E, Geary B et al (2010) Hypoxylon sp., an endophyte of Persea indica, producing 1,8-cineole and other bioactive volatiles with fuel potential. Microb Ecol 60:903–914
Article
PubMed
CAS
Google Scholar
Wang KY, Strobel GA, Yan DH (2017) The production of 1,8-Cineole, a potential biofuel from an endophytic strain of Annulohypoxylon sp. FPYF3050 when growqn on Agricultural residues. J Sustain Bioenergy Syst 7:65–84
Article
Google Scholar
Wani MA, SanjanaK KDM, Lal DK (2010) GC-MS analysis reveals production of 2-phenylethanol from Aspergillus nigerendophytic in rose. J Basic Microbiol 50:110–114
Article
PubMed
CAS
Google Scholar
Wheatley RE (2002) The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leewenhoek 81:357–364
Article
CAS
Google Scholar
Wilson AD, Baietto M (2009) Applications and advances in electronic-nose technologies. Sensors 9:5099–5148
Article
PubMed
CAS
Google Scholar
Worapong J, Strobel GA (2009) Biocontrol of a root rot of kale by Muscodor albus strain MFC2. BioControl 54:301–306
Article
Google Scholar
Worapong J, Strobel GA, Daisy BH, Castillo U et al (2002) Muscodor roseus sp. nov., an endophyte from Grevillea pteridifolia. Mycotaxon 81:463–475
Google Scholar
Wu W, Taatjes WT, Alonso-Gutierrez J, Lee TS, Gladden JM (2016) Rapid discovery and functional characterization of terpene synthases from four endophytic Xylariaceae. PLOS ONE 17:1–19
CAS
Google Scholar
Xu C, MO M, Zhang L, Zhang K (2004) Soil volatile fungistasis and volatile fungistatic compounds. Soil Biol Biochem 36:1997–2004
Article
CAS
Google Scholar
Yuan Z, Chen Y, Xu B, Zhang C (2012) Current perspectives on the volatile-producing fungal endophytes. Crit Rev Biotechnol 32:363–373
Article
CAS
Google Scholar
Zhang CL, Wang GP, Mao LJ, Komon-Zelazowska M et al (2010) Muscodor fengyangensis sp. nov.from southeast China: morphology, physiology and production of volatile compounds. Fungal Biol 114:797–808
Article
PubMed
CAS
Google Scholar
Zhang Z, Li G (2010) A review of advances and new developments in the analysis of biological volatile organic compounds. Microchem J 95:127–139
Article
CAS
Google Scholar
Zhao K, Lu Y, Yuyan J, Ma X et al (2016) Advances and prospects of taxol biosynthesis by endophytic fungi. Chin J Biotech 2532(8):1039–1051
Google Scholar
Zhi-Lin Y, Yi-Cun C, Bai-Ge X, Long ZC (2012) Current perspectives on the volatile-producing fungal endophytes. Crit Rev Biotechnol 32:363–373
Article
PubMed
CAS
Google Scholar