Ando K, Natori S (1988) Molecular cloning, sequencing, and characterization of cDNA for sarcotoxin IIA, an inducible anti-bacterial protein of Sarcophaga peregrina (flesh fly). Biochemist 27:1715–1721
Article
CAS
Google Scholar
Antonova Y, Alvarez KS, Kim YJ, Kokoza V, Raikhel AS (2009) The role of NF-kappaB factor REL2 in the Aedes aegypti immune response. Insect Biochem Mol Biol 39(4):303–314
Article
CAS
PubMed
PubMed Central
Google Scholar
Bartholomay LC, Farid HA, Ramzy RM, Christensen BM (2003) Culex pipiens pipiens: characterization of immune peptides and the influence of immune activation on development of Wuchereria bancrofti. Mol Biochem Parasitol 130(1):43–50
Article
CAS
PubMed
Google Scholar
Baxter RH, Chang CI, Chelliah Y, Blandin S, Levashina EA, Deisenhofer J (2007) Structural basis for conserved complement factor-like function in the antimalarial protein TEP1. Proc Natl Acad Sci U S A 104(28):11615–11620
Article
CAS
PubMed
PubMed Central
Google Scholar
Baxter RH, Contet A, Krueger K (2017) Arthropod innate immune systems and vector-borne diseases. Biochemist 56(7):907–918
Article
CAS
Google Scholar
Blandin S, Levashina EA (2004) Thioester-containing proteins and insect immunity. Mol Immunol 40(12):903–908
Article
CAS
PubMed
Google Scholar
Bou Aoun R, Hetru C, Troxler L, Doucet D, Ferrandon D, Matt N (2011) Analysis of thioester-containing proteins during the innate immune response of Drosophila melanogaster. J Innate Immun 3(1):52–64
Article
CAS
PubMed
Google Scholar
Bulet P, Cociancich S, Dimarcq J-L, Lambert J, Reichhart J-M, Hoffmann D, Hetru C, Hoffmann JA (1991) Insect immunity. Isolation from a coleopteran insect of a novel inducible antibacterial peptide and of new members of the insect defensin family. J Biol Chem 266:24520–24525
CAS
PubMed
Google Scholar
Bulet, P., Dimarcq, J-L, Hetru, C., Lagueux, M., Charlet, M., Htgy, G., van Dorsselaer, A. and Hoffmann, J.A. 1993. A novel inducible antibacterial peptide of Drosophila carries an O-glycosylated substitution. J Biol Chem, 268: 14893-14897
Bulet P, Hetru C, Dimarcq JL, Hoffmann D (1999) Antimicrobial peptides in insects; structure and function. Dev Comp Immunol 23:329–344
Article
CAS
PubMed
Google Scholar
Casteels P, Ampe C, Jacobs F, Vaeck M, Tempst P (1989) Apidaecins: antibacterial peptides from honeybees. EMBO J 8:2387–2391
CAS
PubMed
PubMed Central
Google Scholar
Casteels P, Ampe C, Riviere L, Damme JV, Elicone C, Fleming M, Jacobs F, Tempst P (1990) Isolation and characterization of abaecin, a major antibacterial response peptide in honeybee (Apis mellifera). Eul J Biochem 187:381–386
Article
CAS
Google Scholar
Cheng G, Liu L, Wang P, Zhang Y, Zhao YO, Colpitts TM, Feitosa F, Anderson JF, Fikrig E (2011) An in vivo transfection approach elucidates a role for Aedes aegypti thioester-containing proteins in flaviviral infection. PLoS One 6(7):e22786
Article
CAS
PubMed
PubMed Central
Google Scholar
Cociancich S, Dupont A, Htgy G, Lanot R, Holder F, Hetru C, Hoffmann JA, Bulet P (1994) Novel inducible antibacterial peptides from a hemipteran insect, the sap sucking-bug Pyrrhocoris apterus. Biochem J 300:567–575
Article
CAS
PubMed
PubMed Central
Google Scholar
Dimarcq J-L, Keppi E, Dunbar B, Lambert J, Reichhart J-M, Hoffmann D, Rankine SM, Fothergill JE, Hoffmann JA (1988) Insect immunity. Purification and characterization of a family of novel inducible antibacterial proteins from immunized larvae of the dipteran Phormia terranovae and complete aminoacid sequence of the predominant member, diptericin A. Eul J Biochem 171:17–22
Article
CAS
Google Scholar
Fraiture M, Baxter RH, Steinert S, Chelliah Y, Frolet C, Quispe-Tintaya W, Hoffmann JA, Blandin SA, Levashina EA (2009) Two mosquito LRR proteins function as complement control factors in the TEP1-mediated killing of Plasmodium. Cell Host Microbe 5(3):273–284
Article
CAS
PubMed
Google Scholar
Ganz T, Lehrer RI (1994) Defensins. Curr Opin Immunol 6:584–589
Article
CAS
PubMed
Google Scholar
Ham PJ, Albuquerque C, Baxter AJ, Chalk R, Hagen HE (1994) Approaches to vector control: new and trusted. 1. Humeral immune responses in blackfly and mosquito vectors of filariae. Trans R Soc Trop Med Hyg 88(2):132–135
Article
CAS
PubMed
Google Scholar
Harbach RE (2012) Culex pipiens: species versus species complex—taxonomic history and perspective. J Am Mosq Control Assoc 28(4Suppl):10–23
Article
PubMed
Google Scholar
Harikrishna N, Rao MS, Murty US (2012) Immune peptides modelling of Culex pipiens sp by in silico methods. J Vector Borne Dis 49(1):19–22
CAS
PubMed
Google Scholar
Hill CA, Kafatos FC, Stansfield SK, Collins FH (2005) Arthropod-borne diseases: vector control in the genomics era. Nat Rev Microbiol 3(3):262–268
Article
CAS
PubMed
Google Scholar
Janatova J, Lorenz PE, Schechter AN, Prahl JW, Tack BF (1980) Third component of human complement: appearance of a sulfhydryl group following chemical or enzymatic inactivation. Biochemist 19(19):4471–4478
Article
CAS
Google Scholar
Jayamani E, Rajamuthiah R, Larkins-Ford J, Fuchs BB, Conery AL, Vilcinskas A, Ausubel FM, Mylonakis E (2015) Insect-derived cecropins display activity against Acinetobacter baumannii in a whole-animal high-throughput Caenorhabditis elegans model. Antimicrob Agents Chemother 59(3):1728–1737
Article
PubMed
PubMed Central
Google Scholar
Kaushal A, Gupta K, Shah R, van Hoek ML (2016) Antimicrobial activity of mosquito cecropin peptides against Francisella. Dev Comp Immunol 63:171–180
Article
CAS
PubMed
Google Scholar
Khan SA, Sekulski JM, Erickson BW (1986) Peptide models of protein metastable binding sites: competitive kinetics of isomerization and hydrolysis. Biochemist 25(18):5165–5171
Article
CAS
Google Scholar
Kockum K, Faye IV, Hofsten P, Lee J-Y, Xanthoponlos KG, Boman HG (1984) Insect immunity. Isolation and sequence of two cDNA clones corresponding to acidic and basic attacins from Hyalophora cecropia. EMBO J 3:2071–2075
CAS
PubMed
PubMed Central
Google Scholar
Le BV, Williams M, Logarajah S, Baxter RH (2012) Molecular basis for genetic resistance of Anopheles gambiae to Plasmodium: structural analysis of TEP1 susceptible and resistant alleles. PLoS Pathog 8(10):e1002958
Article
CAS
PubMed
PubMed Central
Google Scholar
Levashina EA, Moita LF, Blandin S, Vriend G, Lagueux M, Kafatos FC (2001) Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell 104:709–718
Article
CAS
PubMed
Google Scholar
Lombardo F, Christophides GK (2016) Novel factors of Anopheles gambiae haemocyte immune response to Plasmodium berghei infection. Parasit Vectors 9:78–83
Article
PubMed
PubMed Central
Google Scholar
Lowenberger C (2001) Innate immune response of Aedes aegypti. Insect Biochem Mol Biol 31(3):219–292
Article
CAS
PubMed
Google Scholar
Lowenberger CA, Bulet P, Charlet M, Hetru C, Hodgeman B, Christensen BM, Hoffmann JA (1995) Insect immunity: isolation of three novel inducible antibacterial defensins from the vector mosquito, Aedes aegypti. Insect Biochem Mol Biol 25(7):867–873
Article
CAS
PubMed
Google Scholar
Lowenberger CA, Kamal S, Chiles J, Paskewitz S, Bulet P, Hoffmann JA, Christensen BM (1999) Mosquito–Plasmodium interactions in response to immune activation of the vector. Exp Parasitol 91(1):59–69
Article
CAS
PubMed
Google Scholar
Mulla MS, Darwazeh HA, Tietze NS (1988) Efficacy of Bacillus sphaericus 2362 formulations against floodwater mosquitoes. J Am Mosq Control Assoc 4(2):172–174
CAS
PubMed
Google Scholar
Paily KP, Agiesh Kumar B, Balaraman K (2007) Transferrin in the mosquito, Culex quinquefasciatus Say (Diptera: Culicidae), upregulated upon infection and development of the filarial parasite, Wuchereria bancrofti (Cobbold) (Spirurida: Onchocercidae). Parasitol Res 101:325–330
Article
CAS
PubMed
Google Scholar
Pal S, Wu LP (2009) Pattern recognition receptors in the fly: lessons we can learn from the Drosophila melanogaster immune system. Fly 3(2):121–129
Article
CAS
PubMed
Google Scholar
Pompon J, Levashina EA (2015) A new role of the mosquito complement-like cascade in male fertility in Anopheles gambiae. PLoS Biol 13(9):e1002255
Article
PubMed
PubMed Central
Google Scholar
Saugar JM, Rodríguez-Hernández MJ, de la Torre BG, Pachón-Ibañez ME, Fernández-Reyes M, Andreu D, Pachón J, Rivas L (2006) Activity of cecropin A-melittin hybrid peptides against colistin-resistant clinical strains of Acinetobacter baumannii: molecular basis for the differential mechanisms of action. Antimicrob Agents Chemother 50:1251–1256
Article
CAS
PubMed
PubMed Central
Google Scholar
Shokal U, Eleftherianos I (2017) Evolution and function of thioester-containing proteins and the complement system in the innate immune response. Front Immunol 8:1–9
Article
Google Scholar
Townson H, Chaithong U (1991) Mosquito host influences on development of filariae. Ann Trop Med Parasitol 85(1):149–163
Article
CAS
PubMed
Google Scholar
Volohonsky G, Hopp AK, Saenger M, Soichot J, Scholze H, Boch J, Blandin SA, Marois E (2017) Transgenic expression of the anti-parasitic factor TEP1 in the malaria mosquito Anopheles gambiae. PLoS Pathog 13(1):e1006113
Article
PubMed
PubMed Central
Google Scholar
Waterhouse RM, Kriventseva EV, Meister S, Xi Z, Alvarez KS, Bartholomay LC, Mury CB, Bian G, Blandin S, Christensen BM, Dong Y, Jiang H, Kanost MR, Koutsos AC, Levashina EA, Li J, Ligoxygakis P, MacCallum RM, Mayhew GF, Mendes A, Michel K, Osta MA, Paskewitz S, Shin SW, Vlachou D, Wang L, Wei W, Zheng L, Zou Z, Severson DW, Raikhel AS, Kafatos FC, Dimopoulos G, Zdobnov EM, Christophides GK (2007) Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes. Science 316(5832):1738–1743
Article
CAS
PubMed
PubMed Central
Google Scholar