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Abstract 

Background:  The biological diversity on planet earth is declining day by day, due to different factors such as exces-
sive applications of pesticides. The utilization of chemical pesticides affected environment as well as microorganisms. 
The awareness among the peoples towards the hazards by the residual toxicity of chemical pesticides should be 
developed for agro-environmental sustainability.

Main body:  Entomopathogenic nematodes (EPNs) are the bacto-helminth parasites which show classical mutualism 
with the genera Xenorhabdus and Photorhabdus. The nematodes along with its endosymbiotic bacteria have a bio-
control potential which could be used to reduce chemical pesticides. Applications of bioagents have been reported 
and resulted in considerable reduction in pathogens. Furthermore, these bioagents are biodegradable, eco-friendly 
and easy to apply for protection of crops against diverse pathogenic organism. The nematode-bacterium complexes 
are effective against huge range of bacteria, fungi, nematodes and insects that are harmful to the crops. Along with 
biocontrol potential, the endosymbionts produce diverse secondary metabolic compounds, exoenzymes and toxic 
compounds that show antibiotic, antimycotic, nematicidal, miticidal and anticancerous properties.

Conclusion:  The present review deals with the diversity of endosymbiotic microbes from EPNs and their role in bio-
control for the agro-environmental sustainability.

Keywords:  Agricultural sustainability, Biocontrol, Diversity, Entomopathogenic nematode, Photorhabdus, 
Xenorhabdus
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Background
Entomopathogenic nematodes (EPNs) are microscopic 
roundworms that belong to the families Heterorhabditi-
dae and Steinernematidae of phylum Nematoda. EPNs 
are beneficial nematodes that exhibit a holoparasitic 
mode of survival (Bhat et al. 2020). The EPNs have been 
reported to survive in most of environmental conditions 

except psychrophilic conditions of Antarctica (Homin-
ick 2002). The EPNs from genus Steinernema and Heter-
orhabditis were considered deadly fatal for a number of 
agricultural insects (Liu et al. 2020). Globally, 17 species 
of genus Heterorhabditis and 100 species of genus Stein-
ernema have been reported that are found to be lethal for 
insect pests (Bhat et al. 2020). These nematodes showed 
mutualistic associations with endosymbiotic bacterial 
species that live inside the nematode. A major role has 
been played by these bacterial endosymbionts in nutri-
tional physiology (Feldhaar 2011). The endosymbionts 
Xenorhabdus and Photorhabdus reside in symbiotic 
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association with EPNs Steinernema and Heterorhabditis 
(Kaya and Gaugler 1993).

In EPNs, the third-stage juvenile (dauer juvenile) 
resides freely in soil with non-foraging behaviour, and 
carries endosymbiotic bacteria inside the body which is 
responsible for causing the pathogenicity in their host. 
Once the dauer juvenile penetrates into the host body 
through spiracles or through natural body openings, 
it releases its symbiotic bacteria inside the haemocoel 
of the insect. The bacterial cells duplicate and generate 
severe toxins that have a high insecticidal potential and 
can assassinate its host in less than 2  days (Adams and 
Nguyen 2002). The infected host dies soon after infec-
tion due to contagion. Within the insect cadaver, these 
bacteria nourish the EPNs and promote the growth and 
reproduction of EPNs. As the food availability shortens, 
the dauer juvenile of EPNs comes out of the cadaver and 
look for a new host. Applications of EPNs with their bac-
terial endosymbionts become a prime approach in the 
biocontrol sector as well as in integrated pest manage-
ment. Moreover, these EPNs now become model organ-
isms and used widely in the fields such as evolutionary 
biology, biological control, soil ecology as well as the bac-
terial symbiotic mutualism (Stock 2015). Emerging dis-
satisfaction due to the excessive applications of chemicals 
insecticides for insect pest control has increased, as they 
showed adverse effects on the environment and human 
health (Tomar et al. 2022). Thus, it has turned out to be 
essential to diminish the utilization of these insecticides 
and replaces those using ecologically safer products in a 
sustainable agriculture perspective.

In recent times, these beneficial endosymbionts 
become a treasure trove for insecticidal compounds as 
well as for different bioactive compounds. The endos-
ymbionts can decrease the chemical insecticides used 
in insect control and plant protection by stabilizing the 
environmental changes (Thakur et al. 2020, 2021; Migu-
nova and Sasanelli 2021). Undoubtedly, these endosym-
bionts may become a favourable substitute in increasing 
the biological control of numerous phyto-insect pests as 
well as pathogens. EPN-associated bacterial endosym-
bionts have a high potentiality for agricultural pest con-
trol due to the toxic compounds and proteins produced 
as secondary metabolites (Thakur et  al. 2022a, 2022b). 
The present review deals with distribution, identification 
and culturing practices of endosymbionts associated with 
EPNs. The major emphasis has been laid on the bioactive 
compounds produced by the endosymbionts.

Main body
Entomopathogenic nematode
Since the seventeenth century or possibly prior to these 
EPNs were familiar (Nguyen and Smart Jr 2004) although 

in the nineteenth and twentieth century’s vast stud-
ies on EPNs were carried out, and it was reported that 
EPNs were distributed worldwide. Steiner was the first 
to expound the EPN as Aplectana kraussei (Steinernema 
kraussei) from a hymenopterous sawfly (Steiner 1923), 
followed by Neoplectana glaseri from Popillia japonica 
(scarabaeid beetle) (Steiner 1929), S. feltiae, S. affinae, 
and S. carpocapsae were from Cydia pomonella (Weiser 
1955). Mracek (2002) reported that the nematodes as 
most victorious organisms on earth which have been 
found nearly all types of habitats. In India, various inves-
tigations have been accomplished to find out the new 
EPNs species that resulted in the isolation of a new H. 
indica species from Coimbatore, Tamil Nadu (Poinar Jr 
et  al. 1992). EPNs species were previously described as 
an excellent means of biocontrol for the management 
of agricultural insect pests. Till now, 11 EPNs species 
were disclosed in India including Heterorhabditis indica, 
H. bacteriophora, S. sangi, S. bicornutum, S. abbasi (S. 
thermophilum), S. siamkayai, S. carpocapsae (S. megha-
layense), S. riobrave, S. glaseri, S. surkhetense, and S. her-
maphroditum (S. dharanai) (Lalramnghaki 2017).

Distribution of endosymbionts of EPNs
The nematodes of families Steinernematidae and Het-
erorhabditidae have gained the interest of humanity 
towards their promising biocontrol capacity of managing 
insect population (Singh et  al. 2022). Xenorhabdus and 
Photorhabdus, the Gram-negative bacteria, are endosym-
bionts of the dauer juvenile (IJ3) phase of EPNs. The IJs 
can perforate the insect via natural body orifice. It liber-
ated the endosymbionts inside the blood stream of the 
host upon getting entry inside the host. Inside the host 
blood stream, the bacterial cells reciprocated. The occur-
rence of huge bacterial cells in the host midgut resulted 
in demises of insect after 24–48  h (Kaya and Gaugler 
1993). Huge numbers of Xenorhabdus and Photorhabdus 
have been reported as endosymbionts from Steinernema 
and Heterorhabditis (Tables 1, 2).

Taxonomy of endosymbionts
Bacterial groups are considered as the most diversified 
biological group having varied phylogeny of the organ-
isms (Adams et  al. 2006). The fossil traces of cyanobac-
teria were found about 2.9 billion years back, and the 
presence of nematodes was supposed somewhat earlier 
in the Cambrian radiation (Noffke et  al. 2003). In the 
mid-Paleozoic era, it has been considered that the pri-
mogenitor of family Heterorhabditidae and Steinernema-
tidae started to reconnoitre their symbiotic interactions 
with the members of Enterobacteriaceae (Poinar Jr 1993). 
Achromobacter nematophilus was the first endosymbi-
ont found in mutualistic association with Neoaplectana 
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Table 1  Global distribution of endosymbionts Xenorhabdus 

Endosymbiotic bacteria Nematode species Host organism Country References

Xenorhabdus szentirmaii Steinernema rarum Galleria mellonella Argentina Lengyel et al. (2005)

Xenorhabdus miraniensis Steinernema spp. G. mellonella Australia Tailliez et al. (2006)

Xenorhabdus magdalenensis Steinernema australe G. mellonella Chile Tailliez et al. (2012)

Xenorhabdus ehlersii Steinernema longicaudum G. mellonella China Lengyel et al. (2005)

Xenorhabdus ishibashii Steinernema aciari G. mellonella China Kuwata et al. (2013)

Xenorhabdus budapestensis Steinernema ceratophorum G. mellonella China Yang et al. (2012a, b)

X. szentirmaii Steinernema costaricense G. mellonella Costa Rica Lengyel et al. (2005)

Xenorhabdus poinarii Steinernema cubanum G. mellonella Cuba Fischer-Le Saux et al. (1999)

Xenorhabdus bovienii Steinernema poinari G. mellonella Czech Republic Sajnaga et al. (2018)

Xenorhabdus nematophila Steinernema carpocapsae Cydia pomonella Czechoslovakia Martens and Goodrich‐Blair 
(2005)

X. bovienii Steinernema feltiae Feltia segetum (Agrotis segetum) Denmark Ehlers et al. (1997)

Xenorhabdus indica Steinernema yirgalemense G. mellonella Ethiopia Tamiru et al. (2012)

Xenorhabdus kozodoii Steinernema boemarei G. mellonella France Tailliez et al. (2006)

X. poinarii Steinernema khuongi G. mellonella Florida Baniya and DiGennaro (2021)

Xenorhabdus doucetiae Steinernema diaprepesi Diaprepes abbreviates Florida Tailliez et al. (2006)

X. bovienii Steinernema silvaticum G. mellonella Germany Akhurst and Boemare (1988)

Xenorhabdus spp. Steinernema kraussei Cephaleia abietis Germany Akhurst (1982b)

X. bovienii Steinernema tbilisiensis G. mellonella Georgia Gorgadze et al. (2015)

X. griffiniae Steinernema hermaphroditum G. mellonella Indonesia Tailliez et al. (2006)

X. kozodoii Steinernema vulcanicum G. mellonella Italy Clausi et al. (2011)

X. bovienii Steinernema ichnusae G. mellonella Italy Tarasco et al. (2011)

Xenorhabdus japonicus Steinernema kushidai G. mellonella Japan Nishimura et al. (1994)

X. bovienii Steinernema litorale G. mellonella Japan Özdemir et al. (2020)

Xenorhabdus sp. Steinernema monticolum A. segetum; A. ipsilon, arapediasia 
teterrella

Korea Kang et al. (2003)

X. hominickii Steinernema karii G. mellonella Kenya Tailliez et al. (2006)

X. stockiae Steinernema surkhetense G. mellonella Nepal Bhat et al. (2017)

X. romanii Steinernema puertoricense G. mellonella Puerto Rico Tailliez et al. (2006)

X. kozodoii Steinernema arenarium – Russia Tailliez et al. (2006)

X. khoisanae Steinernema beitlechemi G. mellonella South Africa Cimen et al. (2016a)

X. khoisanae Steinernema fabii G. mellonella South Africa Abate et al. (2018)

X. indica related endosymbiont Steinernema biddulphi G. mellonella South Africa Cimen et al. (2016b)

X. bovienii Steinernema citrae G. mellonella, Tenebrio molitor South Africa Stokwe et al. (2011)

X. khoisanae Steinernema jeffreyense G. mellonella South Africa Dreyer (2018)

X. khoisanae Steinernema khoisanae G. mellonella South Africa Ferreira et al. (2013)

Xenorhabdus griffiniae Steinernema litchii G. mellonella South Africa Dreyer (2018)

Xenorhabdus khoisanae Steinernema sacchari Eldana saccharina, G. mellonella South Africa Dreyer (2018)

Xenorhabdus budapestensis Steinernema bicornutum G. mellonella Serbia Lengyel et al. (2005)

X. indica Steinernema abbasi G. mellonella Sultanate of Oman Tsai et al. (2008)

Xenorhabdus stockiae Steinernema siamkayai G. mellonella Thailand Ardpairin et al. (2020)

X. poinarii Steinernema glaseri Popillia japonica USA Akhurst (1983b)

Xenorhabdus cabanillasii Steinernema riobrave Helicoverpa zea USA Tailliez et al. (2006)

Xenorhabdus koppenhoeferii Steinernema scarabaei Anomala orientalis USA Tailliez et al. (2006)

X. bovienii Steinernema intermedium G. mellonella USA Akhurst (1983b)

Xenorhabdus mauleonii Steinernema spp. G. mellonella USA Tailliez et al. (2006)

Xenorhabdus innexi Steinernema scapterisci Scapteriscus vicinus Scapteriscus vicinus Kim et al. (2017)

Xenorhabdus vietnamensis, Steinernema sangi G. mellonella Vietnam Kämpfer et al. (2017)

Xenorhabdus thuongxuanensis Steinernema sangi G. mellonella Vietnam Kämpfer et al. (2017)

Xenorhabdus eapokensis Steinernema eapokense G. mellonella Vietnam Kämpfer et al. (2017)
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carpocapsae Weiser (Poinar Jr and Thomas 1965). The 
characteristic features of A. nematophila did not suit with 
any of the previously approved genera that results in the 
emergence of the novel genera Xenorhabdus. This novel 
genus includes bacterial symbionts X. luminescens and X. 
nematophilus (Akhurst 1983a). A noticeable separation of 
X. luminescens among the other Xenorhabdus genera was 
based upon the phenotype as well as the genotype of the 
individual (Boemare and Akhurst 1988) that suggest the 
establishment of new genera Photorhabdus having mutu-
alistic association with the nematodes of genera Heter-
orhabditis (Boemare et al. 1993). The earlier classification 
of Xenorhabdus and Photorhabdus into separate genera 
is completely based upon their phenotypic characters as 
well as on the mechanism of symbiosis exhibited by them 

(Thomas and Poinar Jr 1979). After that, the taxonomy of 
prokaryotes was done through a multiphase prospective 
that include the combined information of various types 
of genotype and phenotypes. This multiphase perspec-
tive is further followed by molecular biology techniques 
including DNA-DNA hybridization and sequence analy-
sis of 16S rRNA gene that turns out to be the foundation 
of the bacterial classification (Stackebrandt 2006).

New species of endosymbionts were discovered by 
following the 98.7% relatedness concept of 16S rRNA 
gene, still an initial move towards identification along 
with the threshold of 70% in DNA-DNA hybridization 
and the threshold of 80% in DNA-DNA hybridization 
for efficiently balancing negligible criterion in the bac-
terial taxonomy approach (Goris et  al. 2007). The gene 

Table 2  Global distribution of endosymbionts Photorhabdus 

Endosymbiotic bacteria Nematode species Host organism Country References

Photorhabdus luminescens subsp. luminescens Heterorhabditis bacteriophora Heliothis punctigera Australia Machado et al. (2018)

Photorhabdus luminescens subsp. laumondii H. bacteriophora H. punctigera Australia Tailliez et al. (2010)

Photorhabdus luminescens subsp. kayaii H. bacteriophora H. punctigera Australia Tailliez et al. (2010)

Photorhabdus luminescens subsp. thracensis H. bacteriophora H. punctigera Australia Machado et al. (2018)

Photorhabdus khanii H. bacteriophora H. punctigera Australia Tailliez et al. (2010)

Photorhabdus caribbeanensis H. bacteriophora H. punctigera Australia Machado et al. (2018)

Photorhabdus asymbiotica Heterorhabditis gerrardi Tenebrio mollitor Australia Akhurst et al. (2004)

Photorhabdus australis subsp. australis H. gerrardi T. mollitor Australia Plichta et al. (2009)

Photorhabdus luminescens subsp. thailandensis H. gerrardi T. mollitor Australia Machado et al. (2021)

Photorhabdus australis H. gerrardi T. mollitor Australia Machado et al. (2018)

Photorhabdus subsp. guanajuatensis Heterorhabditis atacamensis G. mellonella Chile Machado et al. (2019)

Photorhabdus bodei Heterorhabditis beicherriana G. mellonella China Machado et al. (2018)

Photorhabdus luminescens subsp. luminescens Heterorhabditis floridensis G. mellonella Florida Blackburn et al. (2016)

Photorhabdus luminescens subsp. akhurstii Heterorhabditis georgiana G. mellonella Georgia Machado et al. (2018)

Photorhabdus stackebrandtii H. georgiana G. mellonella Georgia Machado et al. (2018)

Photorhabdus kleinii H. georgiana G. mellonella Georgia Machado et al. (2018)

Photorhabdus luminescens subsp. akhurstii; H. indicus Scirpophaga excerptalis India Machado et al. (2021)

Photorhabdus aegyptia Heterorhabditis indicus S. excerptalis India Machado et al. (2021)

Photorhabdus asymbiotica H. indicus S. excerptalis India Machado et al. (2021)

Photorhabdus temperata Heterorhabditis downesi G. mellonella Ireland Machado et al. (2018)

Photorhabdus cinerea H. downesi G. mellonella Ireland Machado et al. (2018)

Photorhabdus luminescens subsp. mexicana Heterorhabditis maxicana G. mellonella Mexico Machado et al. (2019)

Photorhabdus luminescens subsp. sonorensis Heterorhabditis sonorensis G. mellonella Mexico Orozco et al. (2013)

Photorhabdus heterorhabditis Heterorhabditis zealandica Heteronychus arator New Zealand Ferreira et al. (2014)

Photorhabdus luminescens subsp. laumondii Heterorhabditis safricana G. mellonella South Africa Geldenhuys et al. (2016)

Photorhabdus luminescens subsp. noenieputensis Heterorhabditis noenieputensis G. mellonella South Africa Ferreira et al. (2013)

Photorhabdus hainanensis Undescribed spp. G. mellonella South Africa Tailliez et al. (2010)

Photorhabdus namnaonensis H. baujardi G. mellonella Thailand Glaeser et al. (2017)

Photorhabdus temperate Heterorhabditis megidis Popillia japonica USA Toth and Lakatos (2008)

Photorhabdus cinerea Heterorhabditis megidis P. japonica USA Machado et al. (2018)

Photorhabdus tasmanensis Heterorhabditis marelatus G. mellonella USA Machado et al. (2018)

Photorhabdus luminescens Heterorhabditis baujardi G. mellonella Vietnam Glaeser et al. (2017)
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sequencing technique 16 R-gene for classification was 
regarded as inappropriate because of little differences 
along with lateral gene transfer (LTG) (Tailliez et  al. 
2010). The multilocus sequence analysis (MLSA) tech-
nique has been extensively utilized for the recognition 
of many noval species of bacteria (Liu et  al. 2017). The 
enhanced sequencing methodologies permit the utiliza-
tion of whole genetic sequence for the identification and 
classification (Lee et al. 2016). A remarkable potential of 
genome taxonomy has been shown in the high-resolution 
classification of genera Photorhabdus (Machado et  al. 
2018).

Life history of endosymbionts
The EPNs are the organisms that cause diseases in 
insects. In the nematode life cycle specialized infective 
juvenile (IJ3) is the only form that lives outside the host 
insect (Poinar Jr et  al. 1979). Inside the intestinal tract 
of infective juvenile these symbiotic bacteria populate. 
The other juvenile stages IJ1 and IJ2 cannot live without 
their host and do not carry symbiotic bacteria in their 
intestinal tract. The endosymbionts (Photorhabdus and 
Xenorhabdus) of EPNs exhibit almost similar life cycles. 
The infective juvenile works as a carrier in transmitting 
the bacterial endosymbionts (Sicard et  al. 2004). Upon 
entering to the insect body, nematode moves to the 
haemocoel cavity of the insect and released its endosym-
bionts. These endosymbiotic bacteria have the ability to 
escape from the insect immune system and are respon-
sible for causing pathogenicity in the insects by releasing 
a variety of insecticidal toxins (Koppenhöfer et al. 2007).

In addition to pathogenicity against insects, these bac-
teria defend the insect cadaver from invading micro-
organisms (pathogens, competitors, and predators) by 
producing antimicrobial compounds and also contribute 
to nematode reproduction (Gulcu et al. 2012). Inside host 
insect nematodes undergo about 2–3 rounds of repro-
duction before the nutrients depleted after that infective 
juvenile (IJ3) form way out from the insect corpse and 
seek for a new host (Grewal and Georgis 1999).

Photorhabus bacteria are the endosymbionts of Heter-
orhabditis that make a colony behind the basal bulb in the 
anterior portion of the intestine. They were also reported 
scattered in the remaining portion of the intestine (Ciche 
et  al. 2003). The Xenorhabdus are endosymbionts of 
Steinernema that colonize in the specific bilobed vesicle 
of intestine (Martens et al. 2003). The life cycle exhibited 
by these bacteria is quite unique and interesting as they 
lived in symbiotic association with nematode and are 
pathogenic to harmful insects. The endosymbiotic com-
plexes of Steinernema show a very high resemblance with 
Heterorhabditis and have a little variability in their life 
cycle that leads to the independent classification of the 

two genera. Endosymbiont Photorhabdus are emanated 
via the anterior region, i.e. mouth of nematode (Ciche 
et  al. 2008), whereas Xenorhabdus is liberated from the 
posterior region, via anus, of the nematode (Sicard et al. 
2004). Host immune suppressing proteins were released 
by Steinernema that might support their endosymbionts 
release (Simoes and Rosa 1998) but in Heterorhabditis, 
this process is still mysterious (Forst and Clarke 2002). 
Brillard et al. (2002) reported that both genera show hae-
motoxic behaviour.

The endosymbionts of both genera release certain 
protein toxins as well as exoenzymes that are responsi-
ble for causing septicaemia in host insects that leads to 
insect death (Forst and Clarke 2002). In the late infec-
tious state, the proteinaceous toxins produced by bacteria 
damaged the midgut of the insect mainly the epithelium 
lining (Silva et  al. 2002) (Figs.  1, 2). Xenorhabdus and 
Photorhabdus exhibit colony pleomorphism, i.e. phase 
variation phenomenon in which coexistence of two dif-
ferent variants was observed in single bacterial species. 
Differences in trait numbers were observed in these 
variants like release of antibiotics, proteins, pigment sub-
stances, lipases, and bioluminescence (Turlin et al. 2006). 
The endosymbiotic bacteria show two phases in their life 
cycle that are morphologically distinct from each other. 
In Xenorhabdus spp., the cells under phase I are some-
what larger, mobile with crystalline inclusion bodies and 
liberate secondary metabolic substances such as lipases, 
proteases, and some other bioactive components. Phase 
II cells are much smaller than phase I, immobile and 
can easily be recognized by staining with dyes (triph-
enyltetrazolium chloride and bromothymol blue). The 
cells in phase I condition when exposed to nutritional 
media having the fusion of two dyes triphenyltetrazolium 
chloride and bromothymol blue, they shows clearly dis-
tinct dark blue bacterial colonies with red core. But an 
exemption was also noticed that phase I bacterial cells 
do not absorb dye (bromothymol blue). It has stated that 
in two phases of their life cycle, the phase I bacteria was 
normally found in association with reproducing nema-
todes, while the phase II bacteria were found in the nem-
atode infected cadaver (Turlin et al. 2006).

Culturing practices and cost effectiveness 
of endosymbionts
The endosymbionts Xenorhabdus and Photorhabdus 
can be easily isolated from the dead larval cadaver of 
Galleria mellonella L. infected with IJs of EPNs after 
24  h. The infected cadavers should be sanitized with 
merthiolate (0–1% for 120–180  min) and cleaned 
multiple times with distilled water. After that trans-
ferred to the yeast-soy-based (YS) broth and changed 
into suspension with the help of tissue homogenizer. 
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The suspension should be spread over the nutrient 
agar (NA) containing bromothymol blue and triph-
enyltetrazolium chloride. The endosymbionts can be 
isolated using hanging drop system method. The dead 
cadavers should be soaked into absolute ethanol for 
surface cleaning and allowed to dehydrate in sterile 
Petri dish. With the help of a sterilized forceps, dead 
cadaver should be dissected and a drop of haemolymph 
dragged out using a sanitized loop. The loop containing 
haemolymph streaked over the NBT agar and should 
be placed at room temperature for growth (Poinar and 
Thomas 1966). An alternative approach for endosymbi-
onts isolation was by directly crushing the IJs. The IJs 
(50-100IJ) have sterilized with thiomersal (1% for 2  h) 
and centrifuged. After centrifugation the pellet con-
taining IJs should be washed several times and placed 
onto nutrient broth (NB) luria–bertani (LB), tryptic soy 
broth (TSB). The suspension should be spread over the 
NBT agar media or luria–bertani media and cultivated 
at room temperature.

Role of endosymbionts as biocontrol agents
Endosymbionts metabolism produces a wide range of 
secondary metabolites for potential applications in dif-
ferent sectors. In EPNs infected insects, these endos-
ymbionts defend the host cadaver from the invading 
microbiome by the secretion of a variety of compounds 
possessing antibiotic activities. These metabolites are 
also used as biocontrol negotiators for the management 
of viruses, fungi, nematodes, and insects (Lulamba et al. 
2021). The bioactive components produced by Xenorhab-
dus and Photorhabdus play an essential role in the bio-
logical transformation of host insects. Production of 
different kinds of antibiotics, proteases, adhesions, 
lipases, and haemolysins were observed from endosym-
bionts. Even a single Xenorhabdus strain produces mul-
tiple metabolites that act against variety of pathogenic 
organisms. Webster et  al. (2002) recorded the produc-
tions of several antimicrobials such as β-lactam carbap-
enem, isopropylstilbenes from Photorhabdus species. 
The discovery of such antimicrobial complexes acquires 

Fig. 1  Cyclic events occurs in the transmission of bacteria inside nematodes
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major attention of agronomic and pharma industries 
(Hazir et  al. 2016) (Tables 3, 4). Numerous bactericidal, 
fungicidal, entomopathogenic as well as nematode kill-
ing activities have been reported from endosymbionts 
(Muangpat et  al. 2020). All the metabolic complexes 
that showed different activities against insects, parasites, 
fungi, and viruses were possessed a particular gene that 
encoded for particular traits (da Silva et  al. 2020). Vari-
ous strains of Xenorhabdus produces a variety of second-
ary metabolites that show a wide range of bioactivity, 
antibacterial activities, antifungal activities, nematicidal 
activities, insecticidal activities as well as several cyto-
toxic properties (Brachmann and Bode 2013) (Tables  3, 
4).

Insecticidal activity
Insecticidal activities are the insect killing or insect 
controlling mechanisms, showed by Photorhabdus 
and Xenorhabdus. Nematodes penetrate the host body 
through naturalistic orifices and liberate the bacteria 
through defecation that releases compounds that sup-
press the insect immunity (Webster et  al. 2002). They 
have been found to infect Cydia pomonella, Delia 

radicum Diaprepes abbreviates, Thrips spp., Otiorhyn-
chus sulcatus, Phyllopertha horticola as well as the larvae 
of several other insect orders including dipterans and 
lepidopterans (Georgis et  al. 2006). Several X. nemat-
ophila strains produce UnA protein that inhibits the 
accumulation of haemocytes which results in the forma-
tion of cover or sheath around the bacteria and nema-
tode (Ribeiro et  al. 2003). Dunphy and Webster (1991) 
reported that these protein and lipopolysaccharides in G. 
mellonella stop the cluster formation of haemocytes that 
hinder phenoloxidase activation which is a major tool 
of insect immune system (Forst et al. 1997). Eicosanoids 
responsible for the cellular immunity in insect’s also sup-
pressed by X. nematophila strains. They hinder the action 
of phospholipase A2 (PLA2) upon which the produc-
tion of eicosanoids depends (Kim et  al. 2018). Without 
eicosanoids, insects were died due to acute bloodstream 
infection or septicaemia. An insecticidal protein (57 kDa) 
produced by X. budapestensis D43 trigger the phenoloxi-
dase cascade in G. mellonella and resulted in extreme 
immune responses such as productions of a high amount 
of quinones (Yang et  al. 2012a, b). This extreme pro-
duction of quinine is lethal for the insect larvae. Even 

Fig. 2  Action mechanisms of toxic compounds produced by endosymbionts
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Table 3  Bioactive complexes produced by Xenorhabdus 

Bacterial Spp Bioactive complexes/secondary 
metabolite

Biological asset References

X. beddingii R-type bacteriocins Bactericidal Boemare et al. (1992)

X. bovienii Xenocyloins Insecticidal Proschak et al. (2014)

Amicoumacin Antibacterial, insecticidal, antifungal, anti-
cancer, and anti-inflammatory

Park et al. (2016)

Indoles Antibiotic Li et al. (1995a)

Dithiolopyrrolones Antibiotic Li et al. (1995a)

X. budapestensis Bicornitun Antibacterial and antifungal Tobias et al. (2017)

GP-19 Antibacterial and antifungal Xiao et al. (2012)

EP-20 Antifungal

Fabclavine Antibacterial, antifungal, antiprotozoal and 
cytotoxic

Wenski et al. (2020)

X. cabanillasii Nemaucin Antibacterial and antifungal Gualtieri et al. (2012)

Rhabdopeptide Antiprotozoal, insecticidal and cytotoxic Reimer et al. (2013)

Cabanillasin Antifungal Houard et al. (2013)

X. doucetiae Xenoamicin Antiprotozoal Bode et al. (2017)

Xenorhabdin Antibacterial

Xenocoumacin Antibacterial, antifungal and antiulcer

X. indica Taxlllaids Antiprotozoal and cytotoxic Kronenwerth et al. (2014)

X. kozodoii Xenocoumacin Antibacterial, antifungal and antiulcer Tobias et al. (2017)

Xenorhabdus Spp Xenobactin Antibacterial and antiprotozoal Grundmann et al. (2013)

X. khoisanae strain SB10 PAX lipopeptides Antimicrobial Booysen et al. (2021)

Xenocoumacin Antimicrobial Booysen et al. (2021)

X. innexi Rhabdopeptides Antiprotozoal, insecticidal and cytotoxic Hacker et al. (2018)

X. mauleonii Xenoamicin Antiprotozoal Tobias et al. (2017)

and xenocoumacin Antibacterial, antifungal and antiulcer

xenorhabdin Antibacterial

X. nematophila Pristinamycin Antibacterial Brachmann et al. (2012)

Xenorhabdins Antibacterial Qin et al. (2013)

Xenorxides Antibacterial and antifungal

PAX peptides Antibacterial and antifungal Hazir et al. (2016)

Nematophin Antibacterial and antifungal Cai et al. (2017)

Xenocin Antibacterial Rathore (2013)

Xenorhabdicin (R-type bacteriocins) Antibacterial Eugenia Nuñez-Valdez et al. (2019)

Xenocoumacins Antibacterial, antifungal and antiulcer Guo et al. (2017)

Xenortides Antiprotozoal and cytotoxic Esmati et al. (2018)

Rhabdopeptides Antiprotozoal, insecticidal and cytotoxic Zhao et al. (2018)

Xenematides Antibacterial and insecticidal Crawford et al. (2012)

Rhabducin Insecticidal Crawford et al. (2012)

Benzylidene-acetone Antibacterial, immuno-suppressant and 
insecticidal

Ji et al. (2004)

X. szentirmaii Fabclavines Antibacterial, antifungal, antiprotozoal and 
cytotoxic

Wenski et al. (2020)

Szentiamide Antibacterial, antifungal and cytotoxicity Nollmann et al. (2015)

Xenofuranones A and B Insecticidal Dongare et al. (2021)

Xenocoumacin Antimicrobial Dreyer et al. (2019)

PAX lipopeptides Antimicrobial Dreyer et al. (2019)
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programmed cell death in insect haemocytes was also 
caused by several species of Xenorhabdus such as X. 
nematophila, X. beddingii, X. japonica, and X. kozodoii 
(Cho and Kim 2004).

Another cytotoxic protein CyA produced from X. 
nematophila can destroy the insects within one or two 
days (Khush et al. 2002). It was reported that toxin com-
plexes of X. nematophilus include three insecticidal 
proteins xptA2, xptB1, and xptC1 that united to form a 
tetramer (∼1120  kDa) that attached to the outer mem-
branes of insects and form pores in the membrane and 
have very high insecticidal activity against lepidopteran 
insects (Sheets et al. 2011). PMFI296 genes of X. nemat-
ophila produce insect killing proteins such as xptA1, 
xptA2, xptB1and xptC1. These proteins are highly viru-
lent against Pieris brassicae, P. rapae, and Heliothis vire-
scens (Sergeant et  al. 2003). TccC1 toxic gene from X. 
nematophila is responsible for causing mortality in G. 
mellonella larvae (Lee et al. 2004). X. nematophila strain 
CBNU produces Txp40 protein which is toxic against lar-
val stage of Plutella xylostella (Park et al. 2004). The leu-
cine responsive protein (lrp) from X. nematophila, also 
possessed insect killing ability (Hussa et al. 2015). Xeno-
cyloins produced from X. bovienii (SS-2004) also found 

virulent against insects and affect the haemocytic activity 
of insects (Proschak et al. 2014). Outer membrane vesi-
cles (OMV) proteins GroEL homolog (∼58-kDa) of X. 
nematophila also exhibit oral toxicity against Helicoverpa 
armigera (Hb.) larvae (Joshi et  al. 2008). Xenematide 
peptides isolated from X. nematophila also showed insect 
killing potential (Lang et al. 2008). Compounds xenema-
tides and rhabdopeptides derived from X. nematoph-
ila also possess insecticidal activities as they affect the 
haemocytes of insects (Reimer et al. 2009). Srf ABC toxin 
derived from the fosmid clones of X. stockiae HN_xs01 
strain also has insect killing properties. Srf ABC toxin 
brings G2/M at halt and causes necrobiosis or cell death 
in CF-203 cells (midgut cells) of H. armigera larvae (Yang 
et  al. 2019). Chitinase protein (76-kDa) from X. nemat-
ophila strain ATCC 19061 exhibit endochitinase activity, 
β-N-acetylglucosaminidase and chitobiosidase activities 
were found highly lethal against H. armigera (Mahmood 
et al. 2020).

Four major categories of toxin complexes are recog-
nized such as: the Photorhabdus insect-related (Pir) pro-
teins, toxin complexes (Tcs), make caterpillars’ floppy 
(Mcf) toxins and Photorhabdus virulence cassettes (PVC) 
from Photorhabdus. Pir-AB toxic proteins found from the 

Table 4  Bioactive complexes produced by Photorhabdus 

Bacterial Spp Bioactive complexes/secondary metabolite Biological asset References

Photorhabdus luminescens Anthraquinone Insecticidal Zhou et al. (2019)

3,5-Dihydroxy-4-isopropylstilbene
1,3-Dihydroxy-2-(isopropyl)-5-(2-phenylethenyl)benzene

Antifungal, antibiotic Eleftherianos and Revenis (2011)

1,6-Dihydroxy-4-methoxy-9,10-anthraquinone Antibiotic Richardson et al. (1988)

1,8-Dihydroxy-3-methoxy-9,10-anthraquinone
1-Hydroxy-2,6,8-trimethoxy-9,10-anthraquinone
1,4-Dihydroxy-2,5-dimethoxy-9,10-anthraquinone

Antibiotic Hu et al. (1998)

Carbapenem Antibiotic Derzelle et al. (2002)

GameXpeptides Cytoxic Nollmann et al. (2015)

Indigoidine Antibiotic Brachmann et al. (2012)

Indole Nematicidal Hu et al. (1999)

Lumizinone A Cytotoxic Park and Crawford (2016)

Phurealipids – Nollmann et al. (2015)

Photobactin Antibiotic Ciche et al. (2003)

Pyrone Antimycotic, Cytotoxic Hickey et al. (2021)

Stilbene and its derivatives Nematicidal, Antibacterial, 
Antimycotic, Insecticidal

Tobias et al. (2017)

Trans-cinnamic acid Antimycotic Bock et al. (2014)

Rhabduscin Insecticidal Eugenia Nuñez-Valdez et al. (2019)

Photorhabdus temperata Anthraquinone (1,3-dimethoxy-8-hydroxy-9,10-anth-
raquinone and 3-methoxychrysazine)

Insecticidal Yang et al. (2019)

Benzaldehyde Antimycotic Ullah et al. (2014)

Stillbene Insecticidal Shi et al. (2017)

Photorhabdus asymbiotica Glidobactin/Cepafungin I Insecticidal Theodore et al. (2012)

Photorhabdus spp. Galtox Insecticidal Ahuja et al. (2021)
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P. luminescens TT01 genome possess insecticidal proper-
ties. The toxic proteins were effective against insect pests 
(Duchaud et al. 2003) as they acts as binary toxin (Yang 
et al. 2019) and shows resemblance with δ-endotoxins of 
Bacillus thuringiensis. Toxin complexes include numer-
ous subunits having high molecular weight that shows 
insecticidal properties (ffrench-Constant 2007). Genomic 
study of P. luminescens W14 elucidate the availability of 
tc loci and cytolytic RTX-like toxins that shows resem-
blance with the toxins of Erwinia chrysanthemi, Vibrio 
cholera, Erwinia tarda and Serratia marcescens (ffrench-
Constant et  al. 2000). The four complexes encoded are 
tca, tcb, tcc, and tcd present on different locus and pro-
ducing variety of compounds (Sheets and Aktories 2016). 
Oral toxicity by tca and tcd toxic complexes was reported 
in Manduca sexta, and these complexes were regarded as 
latent substitute of transgenic Bt formation (Bowen et al. 
1998).

Even the cell-free filtrate of Photorhabdus spp. also 
exhibits insect killing properties. The genome of Pho-
torhabdus laumondii (TT01 strain) encodes for a wide 
range of metabolic compounds including lipases, tox-
ins, adhesins, proteases, and haemolysins and variety 
of antibiotic substances (Zamora-Lagos et  al. 2018). 
Crude extract of P. luminescence laumondii (TT01strain) 
reported to cause toxicity in Bemisia tabaci (Shrestha 
and Lee 2012) and crude extract of P. luminescence 
sonorensis was effective against Helicoverpa zea. Many 
secondary metabolites produced by Photorhabdus also 
pathogenic to insects. These metabolites are anthraqui-
none derivatives, stilbene derivatives and genistine that 
are highly virulent against insects (Chalabaev et al. 2008). 
Anthraquinone derivatives 3-methoxychrysazine and 
1,3-dimethoxy-8-hydroxy- 9,10-anthraquinone, extracted 
from P. temperata effective against various mosquito 
spp. (Ahn et  al. 2013). Baur et  al. (1998) also describe 
that these anthraquinone acts as an obstacle for ants and 
birds. Stilbenes derived from Photorhabdus hamper the 
activity of phenoloxidase by interfering and interrupting 
the insect (Manduca sexta) immune system. This phe-
noloxidase is the major component of insect immune 
system and is responsible for melanisation (Eleftheri-
anos and Revenis 2011). TccC3 (adenosine diphosphate 
(ADP)–ribosyltransferases) and TccC5 (DP-ribosylated 
Rho guanosine triphosphatase) toxic proteins produced 
by P. luminescens hinder the mechanism of phagocyto-
sis in insect cells and intracellular actin polymerization 
(Lang et al. 2010). P. luminescens, also produces tyrosine 
based compounds, rhabduscin that suppress the insect 
immune system (Crawford et al. 2012).

Photorhabdus temperata M1021 releases benzaldehyde, 
a lethal compound that acts upon the insect immune sys-
tem and kill their insect hosts by seizing their immune 

responses in G. mellonella. Additionally, benzaldehyde 
also reduces the phenoloxidase activities and melanisa-
tion (Ullah et al. 2014). Cell-free filtrate and suspensions 
culture of Xenorhabdus spp. were found highly effective 
against Hopila philanthus (scarabaeid beetles) (Ansari 
et  al. 2003), Otiorhynchus sulcatus (vine weevil), Spo-
doptera exigua (beet armyworm), Schistocerca gregaria 
(desert locust) (Mahar et al. 2008), Tribolium castaneum 
(Red flour beetle) (Shrestha and Kim 2010), Thrips tabaci 
(onion thrips), Frankliniella occidentalis (western flower 
thrips) (Gerritsen et  al. 2005), Plutella xylostella (dia-
mond back moth) (Mahar et al. 2008) and G. mellonella 
(greater wax moth) (Mahar et  al. 2004) under the labo-
ratory bioassay study. X. nematophila and P. luminescens 
were also used against Luciaphorus perniciosus and are 
highly lethal (Bussaman et  al. 2012). Xenorhabdus and 
Photorhabdus strains possess txp40 gene that produce 
ubiquitous insect killing proteins and is effective against 
the insect larvae belonging to order Diptera and Lepi-
doptera. They affect the midgut and cause injury in the 
fat bodies (Brown et al. 2006). Even Xenorhabdus stock-
iae, X. indica, P. luminescence subsp. hainanensis and P. 
luminescence subsp. akhurstii also cause mortality in the 
mosquito larvae (Aedes albopictus and Aedes aegypti) (da 
Silva et al. 2020).

Antibacterial activity
Endosymbionts Xenorhabdus spp. and Photorhabdus 
spp. exhibit antibacterial properties. The endosymbionts 
directly interfere in the development of the target bac-
teria by multiple targets systems such as biosynthesis 
of bacterial protein and cell-wall, DNA replication and 
repair system, via membrane destruction, and by meta-
bolic pathway that ultimately inhibit the growth of the 
target bacteria. Leucine responsive protein (lrp) pro-
duced from X. nematophila showed bactericidal activities 
towards Bacillus subtilis and Micrococcus luteus (Cowles 
et al. 2007). Paul et al. (1981) reported that Xenorhabdus 
spp. secreted several metabolites having antibacterial 
properties. Xenocoumacin (xcnKL strain), ngrA-derived 
compound from Xenorhabdus spp. has widely adapted 
as antimicrobial and antibacterial properties (Singh et al. 
2021). Xenocoumacin II and nematophin isolated from 
X. nematophilus possess modest antibacterial activi-
ties (Lang et al. 2008). Amicoumacin and xenocoumacin 
derived from Xenorhabdus showed a strong inhibition 
towards Staphylococcus aureus (Reimer et  al. 2009). 
Antibiotic complexes were also reported from the genus 
Photorhabdus. Anthraquinone and trans-stilbenes were 
the antibacterial complexes discovered from P. temper-
ata and P. luminescens (Boemare and Akhurst 2006). A 
monoterpenoid compound trans-4-phenyl-3-buten-2-
one (benzylideneacetone) isolated from X. nematophila 
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show their potential effect against phytopathogen Agro-
bacterium vitis, Pseudomonas syringae, Pectobacterium 
carotovorum, Ralstonia solanacearum, and P. carotovo-
rum (Ji et  al. 2004). A lysine-rich cyclolipopetide (PAX 
-peptide-antimicrobial-Xenorhabdus) from X. nemat-
ophila shows modest activity against several bacteria 
(Gualtieri et al. 2009). Several other bioactive compounds 
such as indole derivatives (Sundar and Chang 1993), 
benzylideneacetone (Ji et  al. 2004), ribosomal-encoded 
bacteriocins (Singh and Banerjee 2008), PAX peptides 
(Fuchs et  al. 2011), xenocoumacins (Reimer and Bode 
2014), and depsipeptides (Kronenwerth et al. 2014) were 
purified from Xenorhabdus spp.

Photorhabdus spp. released an array of secondary 
metabolites with a broad range of antibiotic properties 
that hinder the decaying of insect cadaver (Stock et  al. 
2017). Antibacterial capacity of P. luminescens was also 
revealed in the previous studies. Poinar Jr et  al. (1980) 
demonstrated that P. luminescens hinder the develop-
ment of the B. subtilis and Bacillus cereus. They were 
reported effective against phytopathogen Erwinia caro-
tovora (Akhurst 1982a). Paul et  al. (1981) reported two 
compounds, complex V (3,5-dihydroxy4-isopropyl-trans-
stilbene) and complex VI (3,5- dihydroxy-4-ethyl-trans-
stilbene) derived from P. luminescens showing antibiotic 
actions. Antibiotic effect of Photorhabdus spp. against B. 
subtilis was also reported by Chen et  al. (1996) 1,2-iso-
propyl-5-(3- phenyl-oxiranyl)-benzene-1,3-diol (syn. 
2-Isopropyl-5-(3- phenyl-2-oxiranyl)-1,3-benzenediol), 
a new antibacterial complex was also recorded from P. 
luminescens that exhibit potent bactericidal activities 
(Hu et al. 2006). A carbapen complex (1-carbapen-2-em-
3-carboxylic acid) secreted by Photorhabdus represent 
insecticidal potential against various bacterial species 
including Klebsiella pneumonia, Enterobacter cloacae, 
and Escherichia coli (Derzelle et al. 2002).

Anthraquinone by products 1,8-dihydroxy3-
methoxy-9,10-anthraquinone and 3,8-dihydroxy-1- 
methoxy-9,10-anthraquinone derived from Type II 
polyketide synthase enzymes of Photorhabdus shows 
antibacterial activities (Challinor and Bode 2015). Bac-
tericidal effect of Photorhabdus luminescens subsp. 
akhurstii (bSBR36.2_TH) was reported against E. coli, 
Bacillus subtilis, S. aureus RN4220, and S. pyogenes (Der-
zelle et  al. 2002). P. luminescens produces photobactin 
(2-(2, 3-dihydroxyphenyl)-5-methyl-4, 5-dihydro-oxa-
zole-4-carboxylic acid [4-(2,3-dihydroxybenzoylamino)-
butyl]-amide) a catecholate siderophore that shows 
antibiosis against insects (Ciche et al. 2003). Bactericidal 
activities of Photorhabdus spp. were effective against 
Gram negative bacteria Erwinia amylovora responsible 
for causing fire blight in rosaceae (Hevesi et  al. 2004) 
and manage two more bacterial spp. Xanthomonas and 

Pseudomonas in plants (Uma et  al. 2010). Numerous 
biological activities including bactericidal activities were 
observed from isopropylstilbene compound produced 
by Photorhabdus spp. against S. aureus and E. coli (Shi 
et al. 2017). Muangpat et al. (2017) emphasized the bac-
tericidal properties of Photorhabdus spp. The growths of 
about 10 drug-resistant bacterial strains together with S. 
aureus strain PB57, PB36 and ATCC20475 prohibited by 
the extract (ethyl acetate) of P. temperata. Bacterial spp. 
P. luminescence subsp. akhurstii was recorded to effec-
tively suppress the S. aureus strain PB36 (Muangpat et al. 
2020).

Antifungal activity
The metabolites produced by endosymbionts have been 
reported to inhibit the growth of the multiple fungi. 
Huge numbers of research studies were carried out and 
being continued to measure the efficacy of endosym-
bionts against fungal pathogens. X. nematophila pro-
duces cyclolipopetide having lysin rich residue is highly 
effective against fungal pathogens including plant as 
well as animal fungal pathogens (Gualtieri et  al. 2009). 
Chen et  al. (1994) evaluated the inhibitory effect of X. 
nematophilus X. bovienii and P. luminescens against 32 
fungal species and they found effectiveness against all 
fungal species. Even the growth of 7 major phytopatho-
genic fungi: Trichoderma pseudokingi, Botrytis cinerea, 
Mucor piriformis, Ceratocystis ulmi, Pythium colora-
tum, Ceratocystis dryocoetidis, and Pythium ultimum 
were completely suppressed by these endosymbionts. 
Webster et  al. (1995) reported the fungicidal activities 
of endosymbionts Xenorhabdus and Photorhabdus. The 
metabolic complexes from Xenorhabdus and Photorhab-
dus were isolated and it is found that these compounds 
have defensive and fungus eliminating properties. High 
antimycotic effect was recorded in Sclerotinia sclerotio-
rum when cell free filtrate of X. szentirmaii was applied 
(Chacon-Orozco et al. 2020). It was reported that inside 
insect cadaver antimycotic substances were produced by 
Photorhabdus spp. that protect the cadaver and prevent 
the growth from invading fungal pathogen (Chen et  al. 
1994). Crude extract of Photorhabdus spp. was assessed 
against fungal phytopathogens such as Phomopsis sp., 
Fusi cladosporium effusum, Glomerella cingulata, Phy-
tophthora cactorum, and Monilinia fructicola. Modest 
effect of endosymbionts against fungal phytopathogens 
was observed (Shapiro-Ilan et  al. 2009). Strong fungi-
cidal effect of Photorhabdus spp. was observed towards 
Moniliophthora roreri (San-Blas et  al. 2012). Even sev-
eral specified secondary metabolic complexes have been 
applied to assess their antimycotic peoperties. Li et  al. 
(1995b) applied 3,5-dihydroxy-4-isopropylstilbene on 
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fungi Aspergillus fumigatus, A. flavus, Cryptococcus neo-
formans, Botrytis cinerea, and Candida tropicale.

Photorhabdus temperata SN259 strain produces seven 
metabolic complexes among which two stilbene com-
plexes such as 3-hydroxy-2-isopropyl-5-phenethyl phenyl 
carbamate and 2-isopropyl-5-([E]-2-phenylethenyl) ben-
zene-1,3-diol (syn. 3,5-dihydroxy-4-isopropyl stilbene) 
were applied to investigate its impact upon F. oxyspo-
rum, Rhizoctonia solani, Pythium aphanidermatum, and 
Exserohilum turcicum. A highly strong inhibitory effect 
has been observed against P. aphanidermatum (Shi et al. 
2012). Transcinnamic acid isolated from P. luminescens 
prevents the growth of the Fusicladium effusum (Bock 
et al. 2014). P. temperata M102 derived metabolite ben-
zaldehyde was assessed against three phytopathogens 
Phytophthora capsici, Corynespora cassiicola, and R. 
solani. Benzaldehyde shows high inhibitory effect against 
the fungal phytopathogen. Even Photorhabdus spp. has 
been reported to hinder the growth of about 32 fungal 
species (Ullah et  al. 2014). Trans-cinnamic acid (TCA) 
isolated from Photorhabdus sp. hinder the growth of 
Colletotrichum acutatum, Colletotrichum gloeosporioides 
and Colletotrichum fragariae (Chen et  al. 1996). TCA 
also inhibits the growth of F. effusum (Shapiro-Ilan et al. 
2014). The efficiency of cell free filtrate from P. lumine-
scens strain VS, P. temperata and P. luminescens strain 
K122 was assessed against various phytopathogenic 
fungal species such as: Armillaria tabescens, Fusicla-
dium carpophilum, F. effusum, Glomerella cingulata and 
Monilinia fructicola. It was found that these supernatants 
completely suppress the growth of the phytopathogenic 
fungi (Hazir et al. 2016). Under an in vitro inhibition test, 
fungi Alternaria alternate and Fusarium oxysporum sp. 
asparagi were treated with the crude extract of P. lumi-
nescens sp. sonorensis, that show mild effect against these 
fungi although the growth was retarded (Orozco et  al. 
2016). Secondary metabolic complexes produce by P. 
akhurstii exhibit fungicidal activities against Colletotri-
chum gloeosporioides (Tu et al. 2022).

Nematicidal activity
The cell free substrate of Photorhabdus spp. not only 
exhibit insecticidal, antibiotic and antimycotic activi-
ties but also possesses nematicidal properties. They have 
been reported to kill or manage various species of plant 
parasitic nematodes. Several strains of Photorhabdus spp. 
were evaluated against Meloidogyne incognita and Bur-
saphelenchus xylophilus. They were highly lethal against 
second-stage juveniles of M. incognita and adults as well 
as fourth-stage juveniles of Bursaphelenchus xylophilus 
(Hu et al. 1999). Crude extract of P. luminescens sonoren-
sis CH35 strain was applied against three nematode spe-
cies namely: M. incognita, Caenorhabditis elegans and 

S. carpocapsae. It was found that this supernatant was 
highly effective against M. incognita (J2), while it exhib-
ited very low nematicidal activities against C. elegans and 
S. carpocapsae (Orozco et al. 2016). The metabolic sub-
stances stilbene (3,5-Dihydroxy-4-isopropylstilbene) and 
indole produced through P. luminescens strain MD were 
tested against Aphelenchoides rhytium, Bursaphelenchus 
spp., C. elegans and M. incognita. High nematode kill-
ing abilities were exhibited by these derivatives against 
fourth-stage juvenile and adult forms of three tested 
species; however, no nematicidal effect of these metabo-
lites has been observed against M. incognita (J2) (Hu 
et al. 1999). Cell-free supernatant of Xenorhabdus spp. is 
highly toxic against M. incognita and showed inhibitory 
effects (Grewal et al. 1999). Lewis et al. (2001) worked on 
the interactions of S. feltiae and X. bovienii with M. incog-
nita and found that tomato plant infected with M. incog-
nita when treated with same rate of S. feltiae, affect egg 
production with lesser galls in their roots. X. bovienii also 
shows inhibitory effect against M. incognita.

Cell-free filtrate of X. bovienii was applied against 
Meloidogyne javanica and M. incognita and a moder-
ate effect was observed (Kepenekci et al. 2018). Bi et al. 
(2018) reported about seven metabolites (Rhabdopep-
tide I-O or 1–7) from X. budapestensis SN84 that possess 
nematode killing properties and is found effective against 
M. incognita (J2). Among all seven isolated metabo-
lites, rhabdopeptide J2 was highly effective. Xenorhab-
dus spp. along with neem cake and furadan was applied 
to control the M. incognita infestation in Grapevines. It 
was reported that all treatment significantly suppresses 
the nematodes population in grapevines (El-Deen et  al. 
2019).

Bioformulations produced from endosymbionts
Bioformulations are biological pesticides invented with 
useful microbiomes including bacteria, viruses, fungi, 
nematodes, and plant-based extracts as well as semio-
chemicals, as active component. Generally, bioformu-
lations developments are based upon the bioresource 
detection, optimization, stabilization, and risk executive 
energy. The biopesticides have been regarded as best 
alternate of chemical insecticides in sustainable crop pro-
duction due to their eco-friendly behaviour (Gašić and 
Tanović 2013). Nowadays, peoples become aware about 
the hazards caused by extensive use of synthetic chemi-
cal insecticides and moving towards healthy and organic 
foodstuff. Bioformulation applications easily tackle the 
insect resistance problems, provide effective protection 
to the crops and are an important part of integrated pest 
management (IPM) strategies (Elad et  al. 1996). A wide 
range of biopesticides from entomopathogenic bacte-
ria were available for insect pest management. These 
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formulations are in the form of dry (granular) and wet 
products (liquid and wet powder) (Singh et  al. 2014). 
Dust powder, seed dressing powder, water dispersible 
granules as well as wet powders form with dilution attrib-
utes are considered under dry formulations. Emulsions, 
suspoemulsions, suspension concentrates, capsule sus-
pensions, oil dispersions, and ultra-low-volume formula-
tions were considered under wet products/formulation 
(Knowles 2005). The endosymbionts Xenorhabdus and 
Photorhabdus exhibited insecticidal, antimycotic, bacte-
ricidal and nematicidal activities so they can be employed 
for bioformulation production (Namsena and Bussaman 
2020). Namsena et  al. (2016) reported three bioformu-
lations of Xenorhabdus (X. stockiae PB09) in the form 
of liquid supernatant, cell pellet, wettable powder form 
and observed high mortality in mites even after storage 
up to 45 days at 4 °C. P. luminescens along with paraffin 
oil, Tween-20 and sucrose were applied directly as a spray 
against Pieris brassicae, and 100% larval mortality was 
observed within 24 h of foliar application (Mohan et al. 
2003). Sodium alginate capsules were also prepared from 
P. luminescens akhurstii that was reported to cause 100% 

killing of S. litura within 48 h of its infection (Rajagopal 
et al. 2006). Toxicity in Prays oleae was also recorded by 
P. temperate, when ingested directly (Tounsi et al. 2006) 
(Fig. 3).

Conclusion and future prospects
Entomopathogenic nematodes (EPNs), the valuable 
nematodes, have been reported as the finest biocontrol 
agents. EPNs are considered as the best substitute of 
chemical insecticides due to their high potential of infect-
ing the insects hidden even in mysterious places with 
high multiplication ability as well as their eco-friendly 
nature. In the field of biological pest management, the 
application of EPNs along with their bacterial symbionts 
becomes a popular approach of pest control. The diver-
sified secretion systems of entomopathogenic bacteria 
were involved in the release secondary metabolite. These 
secondary metabolites are toxic proteins that possess 
high insecticidal potential along with high antimicro-
bial activities. Xenorhabdus and Photorhabdus strains 
produced multiple metabolites that act against a variety 
of organisms including, protozoans, fungi, nematodes 

Fig. 3  Application strategies for bacterial endosymbionts
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insects, and even against cancerous cells. Various kinds 
of antibiotic were also produced from several species of 
symbiotic bacteria that showed the importance of these 
bacterial symbionts in the drug industry. There is a need 
of more surveys on EPNs to discover more species of 
endosymbiotic bacteria. The secondary metabolites, rich 
sources of toxic and bioactive compounds from endos-
ymbiotic bacteria, need to be optimized and explored in 
the future; along with that there is a necessity of develop-
ment of some by-product from these bacteria and their 
metabolites.
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