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First report of three species of Trichoderma
isolated from the rhizosphere in Algeria
and the high antagonistic effect of
Trichoderma brevicompactum to control
grey mould disease of tomato
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Abstract

Background: Grey mould caused by Botrytis cinerea Pers. (teleomorph Botryotinia fuckeliana (de Bary) Whetzel) is
one of the most destructive fungal diseases of Mediterranean crops. In Algeria, few studies have been made on the
economic impact of this disease. Nevertheless, it is practically present in all tomato and strawberry greenhouses, as
well as in prospected vineyards in the north and south of the country. The complexity of chemical control of this
disease has led to search for Trichoderma strains that are effective in biological control.

Results: Fifteen isolates of Trichoderma spp. were obtained from vigorous and healthy plants (tomatoes, strawberries,
and vines) rhizosphere, and from a commercial bio-compost (Bio-composte®), then identified as T. afroharzianum (four
isolates), T. gamsii (four isolates), T. longibrachiatum (three isolates), T. atroviride (one isolate), T. brevicompactum (one
isolate), T. breve (one isolate), and T. lixii (one isolate) on the basis of DNA sequence analysis of four genes (ITS, tef1,
rpb2, and acl1). In vitro biocontrol tests revealed that four Algerian isolates of Trichoderma spp. (TAtC11, TGS7, TGS10,
and TBS1) had a high antagonistic activity against B. cinerea, the mycelial growth has been reduced by 62 to 65% in
dual-culture technique, by 62.31 to 64.49% in volatile compounds test, and a high inhibition of germling growth was
recorded by TBS1 isolate with 90.68% in Culture filtrates test. Biocontrol tests carried out on tomato plants with T.
brevicompactum (TBS1), T. atroviride (TAtC11), and T. lixii (TLiC8) against B. cinerea (BCT04) showed that TBS1 inoculation
significantly reduced the incidence of disease by 64.43 and 51.35% in preventive and curative treatment, respectively.

Conclusion: The present study revealed the first report of T. brevicompactum, T. breve, and T. lixii in Algeria, and it also
contributes to the promotion of the use of native strains of Trichoderma in biological control leading to a better
preservation of soil microbial diversity.
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Background
Botrytis cinerea Pers, the causative agent of grey mould,
is a necrotrophic and polyphagous ascomycete. It has
been reported on more than 1400 species of dicotyle-
donous and monocotyledonous plants and distributed in
586 genera of plants (Elad et al. 2016). This pathogen
can infect all parts of the plant, seeds, and other planting
material, stems, leaves, flowers, and fruits at the pre-
harvest and post-harvest stages. It is more destructive on
mature or senescent tissues and can remains dormant
for a long period before causing tissue rot (Williamson
et al. 2007). According to Dean et al. (2012), B. cinerea
was classified as the second most important fungal plant
pathogen in the top 10 list, which can be explained by
several factors described by Williamson et al. (2007), the
most important are an exceptionally wide host range;
the nature of Botrytis epidemics; its genetic plasticity, in-
cluding adaptation to fungicides.
The chemical control of the grey mould has become

difficult because this disease presents a wide genetic
variability and a high capacity to acquire resistance
against fungicides, classifying it as a high-risk plant
pathogen (Shao et al. 2021). To solve this problem, many
researchers have proposed alternative methods to con-
trol this disease, such as application of biological control
agents, plant extracts, minerals, and organic compounds
(Nicot et al. 2011).
The genus Trichoderma contains efficient biological

control agents (BCA) with a very high antagonistic cap-
acity against a wide range of plant pathogens (Medeiros
et al. 2017), through various mechanisms of action, such
as parasitism, competition on nutrients, and synthesis of
antibiotics (Sood et al. 2020). Although, several species
of the genus Trichoderma have been shown to be poten-
tially efficient in controlling B. cinerea, only a limited
proportion of them have been exploited as biological
control agents against this pathogen.
For several decades, the genus Trichoderma has

attracted the researchers and industries interest. Approxi-
mately 60% of registered biofungicides based on filament-
ous fungi have been developed from Trichoderma strains
(Verma et al. 2007). Formulation of several commercially
available anti-botrytis products was based on isolates of T.
atroviride, T. harzianum, T. polysporum, and T. viride to
control B. cinerea, such as Sentinel® formulated with T.
atroviride strain, LC52 and Trichodex® formulated with T.
harzianum (Nicot et al. 2016). Testing other species of
this genus in biocontrol essays should be useful, especially
with native species.
The main objective of the present study is to identify

native strains of Trichoderma which are effective in bio-
logical control of B. cinerea, and this could help to
minimize the use of pesticide and protecting the
environment.

Methods
Isolation of fungi
Botrytis cinerea isolates
Isolates of B. cinerea were obtained from organs with
typical symptoms of the grey mould of different host
plants (vine, tomato, strawberry), cultivated in the
south-eastern (Biskra), north-central (Algiers, Tipaza,
Boumerdes), and North-eastern (Bejaia) regions of
Algeria. Single-spore was prepared for each isolate and
deposited on Petri dishes containing PDA medium. After
5 days of incubation under continuous white light and at
a temperature of 20 °C, monosporic isolates were stored
at – 20 °C in 20% (v/v) glycerol.

Trichoderma sp. isolates
Sampling was carried out in different geographic regions
in the north-central of Algeria (Tipaza, Boumerdes, and
Algiers). Trichoderma isolates were isolated from the
rhizosphere of vigorous and healthy plants (tomatoes,
strawberries, and vines), and also from a commercial
bio-compost (Bio-composte®). Soil and compost (10 g)
were dried, ground into powder, and dissolved in 90 ml
of sterile distilled water then vortexed in order to
homogenize the mixture. Several dilutions were elabo-
rated to 10−9 (1v/9v). One ml of each dilution was
spread evenly onto Petri dishes containing the PDA
medium (potato dextrose agar) with 0.05 g streptomycin
to reduce bacterial contaminations. After 8 to 10 days of
incubation at 22 ± 1 °C, the fungal colonies with typical
characteristics of Trichoderma spp. were isolated and
purified by single spore cultures.

Pathogenicity test The pathogenicity of B. cinerea iso-
lates was tested using the technique described by Schüepp
and Küng (1978) and modified as proposed by Vignutelli
et al. (2002) on half apples of the Golden Delicious variety.
The surface of apples was sterilized with ethanol 70% and
then cut in half, on each half three perforations were made
using an 8-mm-diameter punch. The realized holes were
filled with mycelial discs of the pathogen of the same
diameter in direct contact with the apple flesh. For the
control, sterile PDA discs were used. The two opposite di-
ameters of the rot lesions were measured after 3 days of
incubation in the dark at 20 ± 1 °C.

DNA extraction, PCR and sequencing of Trichoderma
spp Genomic DNA was extracted from 7- to 10-day old
mycelial growth on potato dextrose agar (PDA) medium
following the protocol from Goodwin and Lee (1993).
For the molecular identification of the isolates, the PCR
was carried out on 4 genomic regions: (i) internal tran-
scribed spacer (ITS) regions 1 and 2 was amplified using
primers ITS1 and ITS4 (White et al. 1990). (ii) A frag-
ment of approximately 1.2 kb from the gene encoding
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the translation elongation factor 1 (TEF1α) was amp-
lified using primer pairs EF1-728F (Carbone and
Kohn 1999) and TEF1LLErev (Jaklitsch et al. 2005).
(iii) A fragment of about 1.1 kb from the gene encod-
ing RNA polymerase II subunit B (rpb2) was ampli-
fied with primer pairs fRPB2-5f and fRPB2-7cr (Liu
et al. 1999). (iv) A fragment of 0.9 kb encoding the
largest ATP citrate lyase subunit (acl1) was amplified
with primers acl1-230up and acl1-1220low (Gräfenhan
et al. 2011) (Table 1). The PCR mixtures were pre-
pared with Go Taq® Flexi, containing 0.5 μl of each
primer (20 μmol), 1.5 μl of MgCl2 solution (25 mM),
0.5 μl of dNTP (0.2 mM each dNTP), 5 μl of 5×
Green Go Taq® Flexi Buffer and 15.9 μl of sterile-
distilled water and 0.1 μl of Taq DNA polymerase (5
units/μl) and 1 μl of DNA suspension for a total vol-
ume of 25 μl. PCR program for ITS and tef1 gene
start with initial denaturation step of 3 min at 95 °C,
followed by 35 cycles of 30 seconds at 94 °C; hybrida-
tion at 58 °C for 30 s and an extension at 72 °C for
1 min, and a final extension step of 10 min at 72 °C.
Finally, a refrigeration step at 4 °C. rpb2 and acl1
gene annealing temperature has been changed for
both at 55 °C.

Nucleotide and phylogenetic analysis of Trichoderma
sequences Sequences were analyzed by comparison with
all sequences of Trichoderma spp. available at the Gen-
Bank of National Center for Biotechnology Information
(NCBI, https://www.ncbi.nlm.nih.gov/) and the Inter-
national Subcommission on Trichoderma and Hypocrea
Taxonomy (ISTH, www.isth.info) (Druzhinina et al.
2005; Kopchinskiy et al. 2005). Alignments of Algerian
isolates sequences and the reference sequences of ex-
type strains described by several authors (Bissett et al.
2015; Jaklitsch and Voglmayr 2015; Chen and Zhuang
2017) were performed with Clustalw program imple-
mented in MEGA7. Phylogenetic trees were designed for
the four genes studied using the neighbor-joining
method (MEGA7) with 1000 bootstraps.

Antagonistic activity of Trichoderma spp. against B.
cinerea
i. Dual-culture technique

In vitro confrontation test consists of placing two ex-
plants of 8 mm diameter of the antagonist agent (Tricho-
derma spp.) and the pathogen (B. cinerea) in the same
Petri dish containing PDA medium. The explants were
taken with a sterile punch from 5- to 7-day old culture.
The two explants of the pathogen and the antagonist
agent were placed simultaneously along a diametrical
axis, leaving a distance of 5 cm between them and about
2 cm from the extremity of the Petri dish. The control
contains only the explants of B. cinerea isolates. Petri
dishes were incubated 10 days in the dark at 25 °C. Four
repetitions were carried out for each treatment. The per-
centage inhibition of radial growth of pathogens (PIRG
P) was computed compared to a control (Ezziyyani et al.
2004).

ii. Effect of volatile compounds of Trichoderma on the
mycelial growth of B. cinerea

The effect of volatile compounds on the mycelial
growth was evaluated by the method described by Oliv-
ier and Germain (1983). Explants of 8 mm diameter
taken from the 3-day-old cultures of each pathogen and
antagonist were placed in the center of the Petri dishes
containing PDA medium. An assembly was carried out
by superimposing the two Petri dishes without lids, Tri-
choderma spp. was placed on the bottom and B. cinerea
at the top. To avoid loss of volatile substances, the junc-
tion was ensured by parafilm®. Petri dishes containing
the pathogen on the top and PDA without antagonist on
the bottom used as control. Three replicates were used
for each combination and the experiment was repeated
3 times. The 2 opposite diameters of the B. cinerea col-
onies were measured every day for 4 days of incubation
in the dark at 25 °C. Evaluation of inhibition by Tricho-
derma spp. was estimated by calculating the percentage
inhibition of mycelial growth as compared to a control
(Hmouni et al. 1996).

iii. Effect of culture filtrate of Trichoderma spp. on
mycelial growth of B. cinerea

The effect of culture filtrates of 15 isolates of Tricho-
derma spp. was evaluated against 3 isolates of B. cinerea
selected on the basis of their high pathogenicity. To
achieve this experiment, 10 mycelial explants of 8 mm
diameter were collected from Trichoderma cultures of 7-
to 10-day-old and deposited in 100 ml of PDB medium
in 250 ml conical flask, and incubated at 28 °C for 72 h
under continuous agitation. The culture filtrate was first

Table 1 Primer sequences

Gene Primer name Sequences

ITS ITS1 5′-TCGGTAGGTGAACCTGCGG-3′

ITS4 5′-TCCTCCGCTTATTGATATGC-3′

acl1 acl1-230up 5′-AGCCCGATCAGCTCATCAAG-3′

acl1-1220low 5′-CCTGGCAGCAAGATCVAGGAAGT-3′

tef1 EF1-728f 5′-CATCGAGAAGTTCGAGAAGG-3′

TEF1LLErev 5′-AACTTGCAGGCAATGTGG-3′

rpb2 fRPB2-5f 5′-GAYGAYMGWGATCAYTTYGG-3′

fRPB2-7cr 5′-CCCATRGCTTGYTTRCCCAT-3′
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filtered through a filter paper to remove mycelium and a
second filtration through Millipore membranes of 0.20
μm diameter to remove spores, and then stored at 4 °C.
B. cinerea spore suspensions were prepared from cul-
tures of 7–10 days old. The concentration was adjusted
to 106 spores/ml by using the malassez cell.
To study the antifungal effect of Trichoderma spp. cul-

ture filtrates on the mycelial growth of B. cinerea, a final
volume of 1 ml was prepared as follows: Trichoderma
spp. culture filtrate with B. cinerea suspension contain-
ing 800 μl PDB, 100 μl of Trichoderma spp. culture fil-
trate, and 100 μl of B. cinerea spore suspension. Control
without B. cinerea contained 800 μl PDB, 100 μl of Tri-
choderma spp. culture filtrate, and 100 μl ultrapure
water. Control with B. cinerea contained 900 μl PDB
and 100 μl of B. cinerea spore suspension. The prepara-
tions were filled in 96-well plates (300 μL/well). The
plates were covered and sealed to avoid contamination.
Four independent biological replicates were performed;
each replicate included 3 technical repetitions for each
sample in the same plate. Mycelial growth was automat-
ically recorded every 10 min during the 33-h incubation
at 25 °C by nephelometry reader equipped with a 635-
nm laser (NEPHELOstar® Galaxy, Offenburg, Germany).
During incubation, the microplates were shaken at 175
rpm for 5 min every 10 min (Joubert et al. 2010).
Data were exported from Nephelostar Galaxy software

in ASCII format and further analyzed with Microsoft
Excel 2016 (version 16.0.12827.20268) and R3.4.1 (R
Core Team 2020). The lag phase and the maximal
growth rate variables were calculated according to the
method described by Joubert et al. (2010). The initial
relative nephelometric unit (RNU) value was calculated
as the average of the 3 initial measurements and then
subtracted from each curve value. For each point on the
curve, a slope was calculated using measurements that
were taken 2 h before and 2 h after this time. The lag
phase was defined as the time required to obtain a slope
value of 1 and the maximal growth rate was defined as
the highest slope.

In situ biocontrol assays in tomato plants To control
grey mould disease caused by the most virulent isolate
of B. cinerea (BCT04), the potential preventive effect of
three isolates of Trichoderma (TBS1, TAtC11, TLiC8)
was tested in situ on tomato plants cv. “KAWA” of 28-
days old. The tomato plants were grown under a green-
house in pots of 12 cm diameter, containing a mixture
of commercial soil, sterile soil, and sterile sand (v/v/v).
An inoculation with a suspension of 105 spores/ml of B.
cinerea was performed into the pots and after 24 h by
spraying with a suspension of 106 spores/ml of Tricho-
derma spp.

To evaluate the potential curative effect, the same
method was applied, except that inoculation with a sus-
pension of 105 spores/ml of B. cinerea was carried out 24
h before the treatment with suspension of Trichoderma
spp. (106 spores/ml). Approximately 5 ml of conidial sus-
pension per plant of B. cinerea and Trichoderma spp. was
used. The positive control was constituted only by inocu-
lation with a suspension of B. cinerea (105 spores/ml). Ten
plants were used for each combination of B. cinerea/Tri-
choderma spp. and for the positive control. The experi-
ment was conducted for a week and repeated 3 times.
A scale described by You et al. (2016) ranging from 0

to 4, in which 0 indicates that the leaflet is apparently
healthy, while 1, 2, 3, and 4 indicate percentages of nec-
rotic lesion of 1 to 25, 26–50%, 51–75%, and 76–100%
of the total leaflet surface area, respectively. Disease de-
velopment on plants was assessed as a function of the
number of diseased leaflets relative to the total number
of leaflets. Disease incidence and biocontrol efficiency
were calculated for each treatment, using the formulas
described by Xue et al. (2009).

Statistical analysis
To evaluate the biocontrol effect of Trichoderma spp.
isolates on the development of B. cinerea, the data were
subjected to analysis of variance (ANOVA), and when
the data were not normally distributed (Shapiro normal-
ity test-Wilks, P < 0.05), a non-parametric variance ana-
lysis (Kruskal–Wallis test) was performed, using
Statistical Package for R3.4.1. (R Core Team 2020).

Results
B. cinerea isolation and pathogenicity tests
Thirty isolates of B. cinerea were obtained from tomato
plants (10 isolates), vine plants (10 isolates), and straw-
berry plants (10 isolates). The survey was carried out
over two successive years 2016 and 2017, in the north-
central and south-eastern region of Algeria (Table S1;
Supplementary data 1). Pathogenicity tests on half-
apples revealed significant differences among the differ-
ent isolates tested (Kruskal–Wallis test was done on
diameters of the rot lesions, χ2 = 114.14, df = 29, P value
< 0.05). The most virulent isolate of each culture was
chosen for the biocontrol tests, from vine (BCV02), to-
mato (BCT04), and BCFr11 (strawberry) (Fig. 1).

Trichoderma identification and phylogenetic analysis
Fifteen isolates with macroscopic and microscopic char-
acteristics of the genus Trichoderma were isolated from
the different samples collected. Ten isolates were ob-
tained from tomato; strawberries, vines rhizosphere and
5 isolates were obtained from Bio-compost®. Four gen-
omic regions from all of these isolates were sequenced
(Table S2; Supplementary data 1).
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BLAST search of the sequences obtained during this
work was performed and also, they were submitted to
the ISTH TrichOKey (http://isth.info/tools/molkey/
index.php) and TrichoBlast programs (http://isth.info/
tools/blast/index.php). The results with the highest simi-
larity percentages to the 15 sequences obtained in this
study were selected for species identification.
Results revealed that the isolates TAS2, TAS4, TAS5,

and TAS8 belong to Harzianum clade, and presented a
(99%) of nucleotide identity with the reference sequences
of the specie T. afroharzianum, for the tef1 (KP008850)
and rpb2 genes (FJ442691) and (96%) with the species T.
simmonsii, for acl1 gene (KJ665182). The isolate TBeC1
had a (99%) of nucleotide identity with the reference se-
quences of the species T. breve, of the clade Harzianum
for the tef1 (KY688046) and rpb2 genes (KY687983) and
(97%) with the species T. guizhouense for acl1 gene
(KJ665030). The TLiC8 isolate present a (99%) of nu-
cleotide identity with the reference sequences of the spe-
cies T. lixii, of the clade Harzianum for the tef1
(FJ716622) and rpb2 and (98%) with the species T. atro-
brunneum for acl1 gene (KJ664949). Using ITS se-
quences, they were identified as T. harzianum/H. lixii
and showed (100%) of similarity to several species of the
Harzianum clade.
Isolates TLS6, TLC2, and TLC4 showed (99%) of nu-

cleotide identity to the reference sequences of T. longi-
brachiatum, for tef1 (JQ685867), rpb2 (JQ685883), and
acl1 (KJ665057). However, for the ITS gene, they were
identified as T. longibrachiatum and showed a percent-
age of (100%) nucleotide identity with several species be-
longing to the Longibrachiatum clade. The isolates

TGS11 and TGS13 revealed (99%) of similarity to the ref-
erence sequences of T. gamsii, belonging to Viride clade
based on the tef1 sequence (EF488134). In addition, the
TGS7 and TGS10 isolates revealed (99%) of nucleotide
identity with the reference sequence of T. gamsii for the
acl1 gene (KJ665025). TAtC11 isolate revealed (99%) of
similarity to the reference sequences of T. atroviride, clade
Viride for tef1 (MH176994), rpb2 (FJ860518), and acl1
(KJ664952), while for the ITS gene, they were identified as
species belonging to the clade Viride with (100%) nucleo-
tide identity with several species of this clade. TBS1
showed (99%) of nucleotide identity with the reference
sequences of T. brevicompactum species, for the tef1
sequence (EU338292, EU338283) and for ITS sequence, it
was identified as T. brevicompactum and revealed (100%)
nucleotide identity with several species of the Brevicom-
pactum clade.
Phylogenetic trees were designed for each of the 4

gene regions studied, with the sequences of the 15 Al-
gerian isolates and the reference sequences downloaded
from GenBank. Thereby, the trees of the tef1, rpb2, and
acl1 genes revealed the same phylogenetic distribution
of the Algerian sequences obtained during this work and
the presence of 4 distinct clades (Fig. 2) (Fig. S1, S2, S3;
Supplementary data 2). The first one was the clade Har-
zianum, containing the isolates TAS2, TAS4, TAS5,
TAS8, TBeC1, and TLiC8, the first 4 isolates were
closely related to the reference strain of specie T. afro-
harzianum (G.J.S. 04-186), the TBeC1 isolate to the ref-
erence strain of specie T. breve (HMAS:248844) and the
TLiC8 isolate to the reference strain of specie T. lixii
(G.J.S. 97-96 = CBS 110080). The second was the

Fig. 1 Pathogenicity test of B. cinerea isolates on half apples of the variety Golden Delicious, after incubation for 3 days at 21 °C. The values are
the mean of the technical and biological replicates (±SE)
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Longibrachiatum clade, containing TLS6, TLC2, and
TLC4 isolates, which were closely related to the refer-
ence strain of T. longibrachiatum (S328, CBS 816.68) for
the 3 trees. The third clade was Viride, including TGS7,
TGS10, TGS11, TGS13, and TAtC11 isolates; the iso-
lates TGS7, TGS10, TGS11, and TGS13 are closely re-
lated to the reference strain of T. gamsii (GJS 04-09) and
the TAtC11 isolate to the reference strains of T. atrovir-
ide (S360, CBS 142.95). The fourth was the clade Brevi-
compactum in which the isolate TBS1 belongs, and was
closely linked to the reference strain of T. brevicompac-
tum (CBS 109720 = G.J.S.04-381). However, the ITS tree

revealed the same genetic distribution for clades, but the
species were placed differently, thus making identifica-
tion at the species level almost impossible (Fig. S1; Sup-
plementary data 2).

In vitro antagonistic tests
Dual-culture technique
In the dual-culture test, the 15 isolates of Trichoderma
inhibited the mycelial growth of the 3 most virulent iso-
lates of B. cinerea as compared to the control without
Trichoderma spp. with a range varying from 53 to 65%
on PDA medium (Fig. 3). For each B. cinerea isolate, a

Fig. 2 Neighbor-joining phylogenetic tree of Trichoderma spp. constructed with tef1 sequences. Bootstrap support values higher than 75% from
1000 replicates are indicated on relevant tree branches

Fig. 3 Mycelial growth inhibition of three isolates of B. cinerea caused by 15 isolates of Trichoderma spp. revealed by the dual-culture test. Values
are the mean of technical and biological replicates (±SE)
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significant Trichoderma effect was observed (ANOVA
was performed on the percentage inhibition of mycelial
growth, F = 82.33, df = 14,30, P < 0.0001 for BCV02,
and F = 49.68, df = 14,30, P < 0.0001 for BCT04 and
F = 49.29, df = 14,30, P < 0.0001 for BCFr11). The
higher inhibition rate was recorded for T. gamsii
(TGS7 isolate), T. atroviride (TAtC11 isolate) (Fig. S4;
Supplementary data 3) and T. longibrachiatum (TAS8
isolate), which varied from 62 to 65%. T. longibra-
chiatum (TLC2 and TLC4 isolates) and T. breve
(TBeC1 isolate) gave the lowest inhibition rates, ran-
ging from 53 to 57%.

Effect of volatile compounds of Trichoderma on the
mycelial growth of B. cinerea
Results revealed a significant difference in the effect
of volatile substances produced by Trichoderma iso-
lates on mycelial growth of the tested B. cinerea iso-
lates (Kruskal–Wallis test was performed on the
percentage inhibition of mycelial growth, χ2 =
43.018, df = 14, p value < 0.05 for BCFr11, χ2 =
42.477, df = 14, P value < 0.05 for BCV02 and χ2 =
43.262, df = 14, P value < 0.05 for BCT04) (Fig. 4).
Volatile substances emitted by T. gamsii (TGS7 iso-
late) and T. atroviride (TAtC11 isolate) reduced my-
celial growth of B. cinerea isolates by 64.49 and
62.31%, respectively, than the control (Fig. S5; Sup-
plementary data 3). The lowest growth inhibition rate
(18.41 and 19.72%) were reported for T. longibrachia-
tum (isolate TLS6) and T. afroharzianum (isolate
TAS4), respectively.

Culture filtrates
A significant culture filtrates effect was observed for the
3 strains of B. cinerea (Kruskal–Wallis test was done on
germling growth inhibition, χ2 = 33.407, df = 14, P value
< 0.05 for BCFr11, χ2 = 41.267, df = 14, P value < 0.05
for BCV02 and χ2 = 53.082, df = 14, P value < 0.05 for
BCT04) (Fig. 5). The best percentages of inhibition were
recorded from the filtrates of T. brevicompactum (isolate
TBS1) (90.68%) and T. atroviride (TAtC11 isolate)
(68.72%), suggesting a high antifungal effect of these fil-
trates. While filtrates from the rest of Trichoderma spp.
isolates revealed stimulation of germling growth for the
3 tested B. cinerea isolates, as compared to the control.
Percentages of stimulation ranged from 4.25 to 46.31%,
the highest percentage of stimulation being found for T.
longibrachiatum (TLS6 and TLC2 isolates).

In situ test
The effect of spore suspension treatments of T. atrovir-
ide (TAtC11 isolate), T. brevicompactum (TBS1 isolate),
and T. lixii (TLiC8 isolate) on the incidence of disease
caused by B. cinerea (BCT04 isolate), in tomato cv.
“KAWA” revealed significant differences. Biocontrol ac-
tivity was observed for the 3 tested Trichoderma isolates
for preventive and curative treatments. However, the
highest percentages of disease control (DC) were re-
corded for T. brevicompactum (TBS1) with 64.43 ±
4.34% in preventive treatment and 51.35 ± 1.56% in
curative treatment, while the lowest percentages of dis-
ease control (DC) were recorded for T. lixii (TLiC8) with
34.19 ± 4.54% in preventive treatment and only 28.46 ±
8.93% in curative treatment. Based on these results, T.

Fig. 4 Mycelial growth inhibition of three isolates of B. cinerea caused by volatile compounds produced by 15 isolates of Trichoderma spp. Values
are the mean of technical and biological replicates (±SE)
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brevicompactum (TBS1) was the most effective isolate
for the control of grey mould on tomatoes caused by B.
cinerea (BCT04) (Fig. 6).

Discussion
B. cinerea is recognized as a high-risk plant pathogen,
with global economic losses exceeding 2 billion Euros
per year (Dean et al. 2012). At this day, the control of
this plant pathogen is mainly chemical, but due to its
wide genetic variability and adaptability, acquired resist-
ance has been observed with all fungicides used against
grey mould (Shao et al. 2021). This has prompted the

scientific community to move towards alternative con-
trol methods, such as biological control, with the use of
antagonistic agents (Nicot et al. 2011).
Obtained results of pathogenicity test of 30 isolates of

B. cinerea on half apples revealed significant differences
in aggressiveness. This is consistent with the results of
several studies which showed that isolates of B. cinerea
did not exhibit the same degree of aggressiveness on the
same host plant (Decognet et al. 2009). Some strains of
the genus Trichoderma are sought for their highest po-
tential in biological control and in stimulation of the
natural plant defenses by various mechanisms (Hermosa

Fig. 5 Inhibition effect of culture filtrates from 15 isolates of Trichoderma spp. on spore germination and germling growth of three isolates of B.
cinerea. Values are the mean of technical and biological replicates (±SE)

Fig. 6 Protection of tomato plants against B. cinerea isolate (BCT04) revealed by three isolates of Trichoderma spp. (TBS1, TAtC11, TLiC8). Tests
were carried out on 30-day-old tomato plants (Kawa variety). Two modalities of treatment were applied, preventive treatment (PT), and curative
treatment (CT). The values correspond to the mean of 30 replicates (±SE)
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et al. 2012). So, they are used in the formulation of many
commercial products for biological control and/or plant
bio-stimulation (Samuels and Hebbar 2015). In this
study, native strains that were isolated from agricultural
soils in north-central of Algeria were chosen to use, in
order to avoid any ecological disturbance of the soil mi-
crobial biodiversity. Furthermore, meticulous identifica-
tion and characterization must be carried out before any
use (Galarza et al. 2015).
In the present work, 15 isolates were clearly identified as

corresponding to 7 species of Trichoderma distributed in 4
different clades. Until now, only 8 species of Trichoderma
were reported in Algeria: T. harzianum/H. lixii, T. asperel-
lum, T. ghanense, T. atroviride, T. longibrachiatum, T.
viride, T. atrobrunneum, and T. afroharzianum (Keddad
and Bouzenad 2019; Haouhach et al. 2020). Based on these
results, this was the first report of the presence of T. brevi-
compactum, T. breve, and T. lixii in Algeria. In this study,
the ability of Algerian isolates of Trichoderma to control
grey mould disease was demonstrated. Isolates showed high
efficiency in biological control were selected on the basis of
in vitro tests. Consequently, three isolates were chosen for
the in situ biocontrol test, and two of them, T. brevicom-
pactum isolate TBS1 and T. atroviride TAtC11, showed an
interesting inhibitory effect of B. cinerea growth through
culture filtrate test and the third isolate T. lixii (TLiC8),
one of the less studied in biological control was used to test
its biocontrol efficiency.
The radial mycelial growth inhibition of B. cinerea in

dual-culture technique varied from 54 to 64%, indicating
the high competitiveness of Trichoderma species (Bení-
tez et al. 2004). The reduction in nutrient concentrations
generally leads to a reduction in conidia germination
and to a slower growth of pathogen germlings (Nassr
and Barakat 2013). However, the best results were ob-
served with the isolates of T. gamsii (TGS7, TGS10), T.
atroviride (TAtC11), and T. afroharzianum (TAS8).
These three species have been described by several stud-
ies for their ability to control grey mould and other plant
fungal diseases (Redda et al. 2018).
The antagonistic effect of the volatile compound re-

vealed that, T. gamsii (TGS7) and T. atroviride (TAtC11)
showed an important effect compared to the other studied
isolates. A powerful odor of coconut aroma was found in
these two isolates, which may suggest that volatile inhibi-
tory effect of T. gamsii (TGS7) and T. atroviride (TAtC11)
against B. cinerea may be due to pyrone 6-pentyl-2H-py-
ran-2-one ‘coconut aroma’ commonly produced by Tri-
choderma spp. (Vinale et al. 2008). The antifungal activity
of pyrone 6-pentyl-2H-pyran-2-one was shown in vitro
and in vivo against B. cinerea by Pezet et al. (1999).
The highest antifungal activity of culture filtrates on B.

cinerea spore germination and germling growth was ob-
served by T. brevicompactum (isolate TBS1), which may

be explained by the ability of this species to produce
large quantities of trichothecen, trichodermin, and har-
zianum (Klaiklay et al. 2019). Several authors have re-
ported the inhibitory activity of these secondary
metabolites against plant pathogenic fungi, adding this
species to the list of biological control agents (Shentu
et al. 2014). It was also found that 12 isolates of Tricho-
derma spp. did not inhibit the germination of B. cinerea
spores by culture filtrates, but stimulated it. These re-
sults can be explained either by the inability of these iso-
lates to synthesize metabolites with fungicidal and/or
fungistatic effect against B. cinerea isolates or by the re-
sistance of B. cinerea isolates to the metabolites secreted
by Trichoderma isolates. Previous studies have demon-
strated that B. cinerea can develop resistance to antibi-
otics produced by the biological control agents (Fillinger
et al. 2012).
Greenhouse assays were carried out on “KAWA” tomato

plants with the most aggressive isolate of B. cinerea
(BCT04). The most important reduction in disease inci-
dence was observed in T. brevicompactum (isolate TBS1).
Results were very promising in both preventive and curative
treatments. For this reason, T. brevicompactum (isolate
TBS1) can be highly recommended for the development of
commercial bio-fungicides for the integrated management
of grey mould. T. atroviride (TAtC11 isolate) was less ef-
fective in biocontrol in planta test as compared to the re-
sults obtained from the in vitro biocontrol test. As for T.
lixii (TLiC8 isolate), the results were similar to those ob-
tained in in vitro tests; this isolate seems unable to control
grey mould.

Conclusion
The possibility to control the B. cinerea disease using
Algerian isolates was obtained by the rhizosphere of the
host plants. These results also confirmed the effectiveness
of native strains in biological control, leading to a better
preservation of soil microbial diversity, because the strains
already exist in the soil microbial complex. T. brevicom-
pactum (isolate TBS1) was a very interesting species in
biological control of tomato grey mould disease.
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