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Abstract

Background: Bacillus thuringiensis subsp. israelensis (Bti) produces insecticidal endotoxins known as Cry and Cyt. Its
efficiency and specificity make it the most widely used substance as a biopesticide for controlling disease from
vector insects, such as mosquitoes, responsible for important human diseases such as malaria, filariasis, dengue, and
yellow fevers. To date, it is proven difficult to develop a commercial product that has more than 2 years of shelf life,
and there is little information on the viability of these commercial proteins under prolonged storage conditions.

Results: This study aimed to evaluate biological activity of reconstituted Bti endotoxins after 40 years of storage
against the mosquito Aedes aegypti larvae. Five concentrations of Bti extracts were used for bioassays against 3rd and
4th instars of A. aegypti larvae. All reconstituted endotoxins from stored extracts showed a potency increase. The strain
HD-500 from extract 3260 was the most effective insecticide (LC50 = 0.0014mg/l), followed by 3756 (LC50 = 0.0037mg/
l). These strains were particularly notable, increasing their larvicidal potency one hundredfold and one thousandfold,
respectively. Protein profiles in polyacrylamide gels revealed a greater presence of Cyt toxins compared to the stored
Bti extracts, which maintained their activity at high concentrations.

Conclusion: The reconstituted Bti strains presented a great biological activity against A. aegypti larvae, specially extract
3260 (median lethal concentration (LC50) value = 0.0014mg/l). This considerable larvicidal activity after 40 years under
storage was an encouraging signal for the development of future formulation strategies regarding their useful life. The
stability of extracts of stored endotoxins produced by Bti decreased significantly, particularly Cyt1A protein, which is
responsible for their synergistic activity.
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Background
Bacillus thuringiensis subsp. israelensis (Bti) is a ubiqui-
tous gram-positive, rod-shaped bacterium first isolated
in 1976 (Goldberg and Margalit 1977). During its sporu-
lation phase, it produces at least 4 different crystal pro-
teins, Cry (Cry4Aa, Cry4Ba, and Cry11Aa) and Cyt
(Cyt1Aa) (Crickmore et al. 1998; Berry et al. 2002).
These proteins are particularly toxic to different mos-
quito species and constitute two non-related families of
delta-endotoxins.
The demand for bioinsecticides as a remedy for chem-

ical insecticides is increasing, but as the world market
expands, it is necessary to improve the long-term effi-
ciency of active ingredients to improve formulations’
shelf life as a pest management strategy. This directly in-
volves public health and the increasing number of
people affected around the world by mosquitoes, such as
Aedes aegypti, Anopheles sp. and Culex sp., vectors of
important human diseases such as malaria, filariasis,
dengue, and yellow fevers, and cause of millions of
deaths every year (Gad and Al-Dakhil 2018). Bti-based
bioinsecticides are the most widely used larvicides in the
world for mosquito control, mainly due to the synergis-
tic combinations between Cry and Cyt dipteran specific
toxins (Pérez et al. 2005; Cantón et al. 2011; Park et al.
2013). Each one of the Bti proteins had demonstrated
different patterns of persistence (Cry4>Cry11>Cyt) in
the environment (Tetreau et al. 2012). It is known that
products based on natural molecules tend to be less
stable than synthetic compounds; hence, shelf life of
entomopathogen formulations is often low (Villaverde
et al. 2014; Moustafa et al. 2018). Few studies have eval-
uated the persistence of the insecticidal activity of B.
thuringiensis formulations under storage conditions,
whereby the percentage loss of the formulated Bt prod-
ucts after a period of over 2 years (24%) was higher than
the permissible limit (16%) demonstrating low shelf life
(Moustafa et al. 2018). There are no reports indicating
that the viability of Bti commercial products exceeds 2
years under ambient conditions. A recent study was
undertaken to evaluate the persistence of 20 Bti extracts
stored for prolonged periods of time. All extracts pre-
sented biological activity at high concentrations against
A. aegypti larvae, demonstrating the biological persist-
ence of crystal proteins (Galán et al. 2017). The reconsti-
tution and characterization of Bti toxins has never been
evaluated after long storage periods, nor observed
whether they have retained their genetic capacity and
maintained the same biologic activity after reactivation.
Therefore, in order to improve performance of Bt for-

mulations, shelf life, and viability strategies, the purpose
of this research was to reconstitute and determine the
viability of the toxic proteins of Bti after 40 years under
storage conditions.

Methods
Bacillus thuringiensis var. israelensis strains
Five Bti fermentation extracts with the code: 3260, 3501,
3691, 3696, and 3756, respectively, were produced by
coprecipitation lactose-acetone method by Dulmage et al.
(1970) at the US Department of Agriculture, Agricultural
Research Service (USDA-ARS) from the strains HD-500
and HD-567, chosen from the previous work of Galán
et al. (2017). During the storage period, all extracts were
stored in dark and dry conditions exclusively for this pur-
pose at 25 ± 3 °C in sterile and hermetic bottles.

Reconstitution of toxic complex: spore ∂-endotoxin
For each Bti extract, 20 mg of powder was dissolved and
homogenized on a vortexer in Eppendorf tubes with 1
ml of sterile ionized water, reactivated in Petri dishes
and incubated in BD Bioxon nutrient agar for 48 h at
30 °C. Subsequently, the colonies were inoculated into
50-ml flasks containing 10 ml nutrient broth (NB, Difco)
as a culture medium for 12 h at 30 °C in an incubator
shaker (New Brunswick Scientific Co., Inc., Edison, NJ)
running at 150 rpm. Then, 1 ml from each of the cul-
tures in the mid-logarithmic growth phase was trans-
ferred into 500-ml Erlenmeyer flasks containing 100ml
of the same medium for 72 h at 30 °C in the same shaker
running at 150 rpm until 80% sporulation had been
achieved and most of the spores and crystals had been
released. The spore-crystal complex was then extracted
using the lactose-acetone co-precipitation method (Dul-
mage et al. 1970).

Aedes aegypti bioassays
Toxicity against A. aegypti larvae was determined by
multiple bioassays under laboratory conditions. The lar-
vae of the 3rd and 4th instars of A. aegypti, used in these
experiments, were obtained from the insectary of the In-
stitute of Biotechnology of the School of Biology of the
UANL. This mosquito colony has been permanently
maintained under pathogen-free conditions at 28 to
30 °C, with 60–80% relative humidity and light/dark cy-
cles of 12 h. The larvae were fed daily on finely ground
presterilized dog food (Pedigree brand).
For each Bti extract tested, 4 replicates per concentra-

tion were performed on 25 individuals of the 3rd instar
larvae, which contained 150 ml of tap water with the
bioinsecticide, according to the standard bioassay pro-
cedure described by the World Health Organization
(2005). Five negative controls consisting of larvae ex-
posed to tap water only were performed, and as a posi-
tive control (100% mortality), a primary standard was
prepared from VectoBac® 3000 UTI/mg (Valent BioSci-
ences Corp. Libertyville, IL). All bioassays were per-
formed at room temperature (25–28 °C). Suspensions of
each fermentation extract were prepared at 200 ppm in
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Erlenmeyer flasks. Several dilutions were then made to
obtain final concentrations of each treatment (5, 1, 0.5,
0.1, 0.05, 0.01, 0.005, and 0.001 mg/l).

Protein profile analysis
The protein profiles of Bt spore-crystal toxins were ana-
lyzed by SDS-PAGE. A total of 1 mg of crystal and
spores from each Bti strain was solubilized in 100 μl of
Nanopure water. They were fractionated by protein buf-
fer (2-mercaptoethanol 5%, Tris-HCL 60mM pH 6.8,
glycerol 25%, SDS 2%, bromophenol blue 0.1%), heated
(95 °C for 5 min), and then analyzed by sodium dodecyl
sulfate 12% polyacrylamide gel electrophoresis (SDS-
PAGE). Finally, proteins were visualized by Coomassie
blue staining (Green and Sambrook 2012).

Statistical analysis
Results were tabulated according to concentrations, con-
sidering the number of live and dead larvae with 4 repli-
cations per treatment, performed in triplicate at 24 and
48 h. Values of 50% lethal concentration (LC50) as well
as confidence limits were obtained by probit analysis
(Finney 1971) Repeated measures ANOVA and Tukey-
Kramer post hoc measurements were performed to com-
pare the means among the different extract treatments
under different conditions, using the NCSS statistical
software (2019).

Results
Efficacy of stored and reconstituted Bti extracts against
Aedes aegypti
The Bti extracts generated under lactose-acetone co-
precipitation methodology (Dulmage et al. 1970) and
recovered after extensive storage period presented sig-
nificant mortality during the first 24 h, using 5 treat-
ments at different concentrations (0.1, 0.05, 0.01,
0.005, and 0.001 mg/l). The mortality time of recon-
stituted Bti endotoxins from stored extracts on A.
aegypti larvae is depicted in Table 1. The reduction
in larval population was observed each 12 h, except in
the control experiment. Extracts 3260 and 3756 dem-
onstrated high mortality rates against A. aegypti larvae
in the first hour of application, surpassing even the
most commercial products, thus making them good
candidates for development as a high yield bioinsecti-
cides. This strong larvicidal activity is evidence of
high spore viability and preservation of a strain’s gen-
etic capacities.
The results of these 5 reactivated strains tested in bio-

assays against 3rd and 4th instars of A. aegypti larvae
showed significant differences in the biological activity,
compared with the stored extracts. As shown in Fig. 1,
they presented toxic activity at the concentrations as low
as 0.001 and 0.005 mg/l, as in the case of the extracts

3260 and 3756, respectively, which presented higher bio-
logical activity than the other reconstituted extracts
tested after 40 years in storage.
Strain HD-567 from reconstituted extract 3260 killed

50% of mosquito larvae (LC50) at 0.0014 mg/l, much
higher mortality rate than the standard Bti powder Vec-
toBac (0.01 mg/l). Extract 3756 (LC50 0.0038mg/l) from
strain HD-500 was the one which increased its toxicity
than all reactivated samples, increasing its larvicidal po-
tency one thousandfold (Fig. 2).

Table 1 Mortality response time from twenty-five Aedes aegypti
larvae per concentration. Five different treatments were tested
from Bacillus thuringiensis subsp. israelensis (Bti) reactivated
extracts

Bti HD extracts Time
(h)

Dead larvae/concentration (mg/l)

0.1 0.05 0.01 0.005 0.001

3260 1 25 25 12 1 0

12 25 25 25 15 4

24 25 25 25 24 9

36 25 25 25 25 12

48 25 25 25 25 14

3501 1 1 0 0 0 0

12 10 1 0 0 0

24 18 4 2 0 0

36 22 11 3 0 0

48 23 18 5 1 0

3691 1 0 0 0 0 0

12 8 3 0 0 0

24 17 5 0 0 0

36 22 9 0 0 0

48 22 13 1 0 0

3696 1 0 0 0 0 0

12 9 2 0 0 0

24 15 5 0 0 0

36 18 7 2 0 0

48 20 9 2 0 0

3756 1 25 8 2 0 0

12 25 20 24 13 0

24 25 25 25 20 0

36 25 25 25 23 1

48 25 25 25 24 3

VectoBaca (control) 1 8 - - - -

12 13 - - - -

24 18 - - - -

36 25 - - - -

48 25 - - - -
a3000 UTI/mg
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Endotoxin analysis from Bti extracts
SDS-PAGE analysis comparisons of the protein profiles
between HD extracts (stored and reconstituted) and the
known reference Bti-H14 (Zghal and Jaoua 2006) revealed
that overall all Bti extracts showed patterns similar to Bti-
H14. However, the protein profile of reconstituted Bti ex-
tracts was strikingly different from that shown for those
subjected to long periods of time (40 years). Both shared
several protein bands (≥ 75%), but reconstituted Bti ex-
tracts presented stronger bands, with molecular masses of
approximately 70 and 100 kDa, respectively, but of par-
ticular interest was one band of approximately 28 kDa, the
expected size for the synergic toxic protein Cyt1A (Fig. 3).
The LC50 of the extracts 3501, 3969, and 3691, ranged

around 0.10 mg/l, considerably enhanced than the stored

ones, increased their potency tenfold, a product of active
protein reconstitution. During evaluation of stored ex-
tracts, even at the concentrations of 5 mg/l, their toxic
activity for killing larvae continued to be unaltered as
shown in Table 2. Negative control assays showed no
mortality.

Discussion
After maintaining Bti extracts under storage for 40 years
(the longest time studied up to the present) confirmed
the long-term viability of Bti endotoxin proteins after
isolation through lactose-acetone treatment after such
long periods of time under storage. Conversely, the few
reports on persistent toxicity in the field or under
control indicate that these proteins rapidly lose their

Fig. 1 Mortality percentage of Aedes aegypti larvae exposed to different HD extracts concentrations from Bacillus thuringiensis subsp. israelensis (Bti)
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insecticidal properties due to different causes. Among
the environmental factors that negatively affect the per-
sistence of toxicity are temperature, solar radiation, pH,
organic matter, and solubilization (Manonmani et al.
2008; Hung et al. 2016). There are very few studies of
the shelf life persistence of Bt endotoxins and commer-
cial formulations. As natural products, their high bio-
degradable properties are well-known. Therefore, these
imported products tend to have little efficacy under local
and environmental conditions (Prior 1989). The con-
tinuous larvicidal activity of the stored extracts may be

due to various factors, from its production to its conser-
vation, such as keeping them in hermetically sealed vials,
in order to avoid moisture absorption since this material
was found to be highly hygroscopic (Manonmani et al.
2008). Likewise, the adsorption of the spore-crystal com-
plex in the lactose particles collected during the produc-
tion of the fermentation extract may have maintained
the protein’s conformational stability. Now it is known
that binding to particles favors the protection of cells
against damage and reduces their susceptibility to bac-
terial contamination and degradation, keeping them

Fig. 2 Results of the probit analysis of the cumulative mortality obtained from experiments with A. aegypti larvae at 24 h, comparing the median
lethal concentration of both reactivated and stored Bacillus thuringiensis subsp. israelensis (Bti) fermentation

Fig. 3 SDS-PAGE protein analysis of stored (S) and reactivated (R) HD extracts of Bacillus thuringiensis var. israelensis (Bti), Protein Marker (M) PageRuler®
Stained with Coomassie® Brilliant blue G 250
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biologically active (Vettori et al. 2003; Prabakaran and
Hoti 2008). These findings indicated that the recovery
method for spore-crystal complex by means of lactose-
acetone coprecipitation, coupled with specific conditions
of humidity, temperature, and light, can extend the shelf
life of Bti extracts and retain the biological activity of en-
dotoxins for decades.
The results obtained in the protein analysis are con-

sistent with the differential persistence of the biological
activity observed on the bioassays, under laboratory con-
ditions against A. aegypti larvae. According to different
studies, it is suggested that the larger the protein size,
the longest it persists: Cry4 (130 kDa)> Cry11 (70 kDa)>
Cyt (28 kDa) (Tetreau et al. 2012 and Ben 2014). In this
study, it was clear that all Bti extracts tested had a high
storage stability, in contrast with findings of different
studies reporting poor protein stability of endotoxins
under storage periods, in which shelf life was often low
and the viability of products did not exceed 2 years
under ambient conditions (Moustafa et al. 2018).
The toxic potency of Bti proteins lies in their synergistic

activity attributed to complex interactions among the 4
main endotoxins: Cry4A, Cry4B, Cry11Aa, and Cyt1
(Pérez et al. 2005; Pérez et al. 2007; Cantón et al. 2011;
Elleuch et al. 2015). The larvicidal activity of each of the 4
Cry’s was greater than those of Cyt, but the high activity
of the entire crystal was a product of synergies between
them (Pérez et al. 2007; Ben 2014). The low rates of
Cyt1Aa toxin observed in the protein profile analysis (Fig.
3) might have affected the biological activity of the stored
extracts due to the unique characteristic of Cyt1Aa, serv-
ing as an additional receptor for Bti Cry proteins. Cyt1A
improves the activity of Cry toxins, enabling them to func-
tion as membrane-bound receptors, hence improving their
binding to epithelial microvilli in the intestine of the A.
aegypti insect, and facilitating the formation of pre-pore
oligomeric structures, thus synergizing their toxicity (Can-
tón et al. 2011; Ben 2014; Torres et al. 2018). The loss of
Cyt biological activity in stored extracts may be due to the
latent presence of proteases, as well as the constant
temperature (25 °C) for long periods of time. All this can
produce conformational changes in its structure (Hung

et al. 2016), thus hinder toxic activity. However, there are
some reports highlighting UV light and sunlight as a pri-
mary degradation pathway (Hung et al. 2016; Moustafa
et al. 2018). Further research is needed to understand the
role that this disaccharide could have in moderately con-
serving the activity and viability of the larvicidal proteins.
The data obtained encourage developing future formula-
tion strategies regarding their useful life and continued
biological activity for long periods under storage condi-
tions to significantly increase yield.

Conclusion
The stored extracts of Bti maintained their viability and
genetic capacities after 40 years under storage; neverthe-
less, the synergistic protein Cyt1A was the most suscep-
tible, having a high rate of decline. The recovery method
for spore-crystal complex by means of lactose-acetone
coprecipitation, maintained under specific storage condi-
tions, including humidity, temperature, and light, held
endotoxins stable for many years.

Abbreviation
Bti: Bacillus thuringiensis israelensis
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