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Abstract

Background: The fungus, Beauveria bassiana (Bals.) Vuil., is one of the most important entomopathogenic fungi
(EPFs). Recently, its new role was discovered in nature, to be an endophyte in plants. It has been reported as an
endophytic fungus in many monocotyledonous and dicotyledonous plants.

Main body: The study was conducted to evaluate the ability of the fungus, B. bassiana, to colonize and persist in
cucumber plants under laboratory conditions and to detect its systemic growth inside the plant tissues in addition
to pathogenicity in the plant. The isolate, B195, of the fungus, B. bassiana, was used. Five different inoculation
methods were followed: seed dusting, seed immersion, soil drench, seedling drench, and foliar spray. The fungus, B.
bassiana, could persist inside different cucumber tissues up to 90 days from inoculation. Soil drench provided the
highest recovery rates, while foliar spray gave the lowest rates. Colonization rates reached 94.44 and 73.68% for
stem and 68.26 and 37.79% for root, 30 and 90 days post soil drench, respectively, while in foliar spray, it reached
33.51 and 16.45%, after 30 and 90 days post-treatment, for the stem and 9.45 and 0% for the root, respectively. No
negative effects were observed in inoculated plants or on fungal pathogenicity.

Conclusion: Results showed for the first time the ability of the fungus, B. bassiana, isolate B195, to artificially
colonize and survive in different parts of cucumber plants under laboratory conditions by different inoculation
methods and to grow systemically in plant tissues. This study is considered a preliminary study to the utilization of
the fungus, B. bassiana, as an endophyte in cucumber plants to reduce the density of insect pests.
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Background
Entomopathogenic fungi (EPFs) play an important role
in the biological control of plant pests, and now many
species are available as commercial products (Shahid
et al. 2012). Recently, some of the EPFs have shown an
ability to colonize tissues of a number of plants endo-
phytically, which provide protection against various in-
sect pests, and the term “endophytic entomopathogenic
fungi” (EEPFs) was introduced (Ownley et al. 2010; Vidal
and Jaber 2015).

The fungus, Beauveria bassiana (Ascomycota: Hypo-
creales), is one of the most important EEPFs. Although
it has been described as an entomopathogen by Agostino
Bassi since 1835, it has not been recognized as an endo-
phytic fungus until 1991 by Bing and Lewis, who dem-
onstrated its ability to colonize corn plants (Zea mays
L.) endophytically (Bing and Lewis 1991, 1992; Wagner
and Lewis 2000).
In recent few years, more interests about the role of

the fungus, B. bassiana, as an endophyte in plants, have
been shown. It has been reported as an endophytic fun-
gus in many monocotyledonous and dicotyledonous
plants. It can colonize different parts of the plant such
as roots, stems, leaves, flowers, and seeds either as
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occurring naturally or as a result of inoculation (Vega
et al. 2008; Ownley et al. 2010; Vidal and Jaber 2015;
Card et al. 2016; Pus 2017).
B. bassiana has been recorded as an endophyte in sev-

eral plant species such as corn (Wagner and Lewis 2000),
cacao (Posada and Vega 2006), date palm (Gómez-Vidal
et al. 2006), opium poppy (Quesada-Moraga et al. 2006),
banana (Barta 2011), coffee (Posada et al. 2007), sorghum
(Tefera and Vidal 2009), jute (Biswas et al. 2013), bean
(Mutune et al. 2016), grapevine (Jaber 2015), radiate pine
(Brownbridge et al. 2012), cotton (Griffin 2007), wheat
(Sánchez-Rodríguez et al. 2018), strawberry (Dara and
Dara 2015), cabbage (Pus 2017), tomato (Omukoko and
Turoop 2017), and potato (Alsaoud et al. 2017). It was also
able to colonize some cucurbitaceous plants such as
pumpkin (Gurulingappa et al. 2010), squash (Jaber and
Salem 2014), and melon (Resquín-Romero et al. 2016).
Recently, its ability to colonize cucumber plants has been
shown, where Hassan et al. (2019) recorded a natural
endophytic isolate of the fungus, B. bassiana, from
cucumber leaves in Iraq. In addition, Shaalan and
Ibrahim (2018) demonstrated an endophytic establish-
ment of B. bassiana in cucumber plants, 10 days post
seed immersion, and achieved about 50–60% recovery.
Cucumber plants are exposed to numerous insect

pests that decrease productivity, and the fungus, B.
bassiana, has been used for many years as a biological
control agent by traditional methods to reduce insect
damage, but in the direct use, its propagules are exposed
to the harmful UV radiation, fluctuating humidity, and
temperature, reducing its effectiveness (Kim et al. 2013;
Omukoko and Turoop 2017). Therefore, endophytic es-
tablishment in the plant provides an acceptable ap-
proach for avoiding this problem in field application and
opens up new horizons for biological pest control.
The aims of the present study were (1) to evaluate the

ability of a local isolate of the fungus, B. bassiana, to
colonize cucumber plants, using different inoculation
methods under laboratory conditions; (2) to detect the
persistence of the fungus inside the plant; and (3) to
demonstrate the potential of its systemic growth from
the point of inoculation to other plant parts. Five inocu-
lation methods were used, and the colonization was eval-
uated every 30 days for 3 months.

Main text
Materials and methods
Fungal isolate
The isolated fungus (B195), B. bassiana, was used. It was
isolated in 2018 from olive orchard soil at Al-
Shabatliyah, Latakia, Syria (35°41'10.6"N 35°49'36.6"E),
using the Galleria bait method, which was described by
Zimmermann (1986) and Meyling (2007). The isolate
was identified morphologically as B. bassiana based on

each of Humber and Steinkraus (1998), Rehner et al.
(2011), and Lacey (2012). It was cultured on potato dex-
trose agar (PDA; Titan Biotech LTD.) to which the anti-
biotic amoxicillin was added, and stored at 4 °C until use.
The spore suspension was prepared based on Lacey

(2012) as the following: 14-day-old colonies grown on
PDA were flooded by 10 ml sterile distilled water con-
taining 0.05% Tween 80. The colonies’ surface was
scraped off by a sterile syringe to ensure maximum co-
nidial harvesting, then filtered through sterile muslin to
remove any mycelial fragments, and shaken on a mech-
anical shaker for 15 min. Suspension concentration was
calculated using a Malassez counting chamber, then ad-
justed to 4.9 × 107 spores/ml.
Viability of the conidia was assessed by germination

assessment. A 100 μl from the suspension was spread
over the surface of a Petri plate containing PDA and in-
cubated at 25 ± 2 °C for 24 h. After incubation, a drop of
lacto-phenol cotton blue was added to each plate, over-
laid with a coverslip, and examined under a microscope.
The percentage of germination was determined by ran-
domly counting at least 300 spores for each plate. Co-
nidium was considered to be germinated when it had a
germ tube at least as long as the smallest diameter of
the conidia (Lacey 2012). Viability was up to 90% in all
assessment times.

Cucumber plants
Raade F1 hybrid cucumber (Elite Plant-Breeding and
Seeds Company, Russia) was used in this study. Prior to
application, seeds were immersed in sodium hypochlor-
ite (NaOCl) 2.5% for 3 min for surface disinfection, then
in ethanol 70% for 1 min, and rinsed 3 times with steril-
ized distilled water. To ensure that the surface disinfec-
tion process worked, seeds selected randomly were put
on PDA (9-cm Petri plate) at a rate of 5 seeds per plate.
Three plates were prepared and incubated at 25 ± 2 °C
in darkness for 2 weeks. The disinfection process was
considered successful when no fungal growth was ob-
served on the disinfected seeds.

Inoculation methods
Five inoculation methods: seed dusting (T1), seed
immersion (T2), soil drench (T3), seedling drench (T4),
and foliar spray (T5) were tested. For seed dusting treat-
ment, cucumber seeds before planting were placed in
contact with conidia of a full-grown colony of the fungus
for 2 h in a Petri plate, then placed onto sterilized moist
filter paper for 10 min. In seed immersion treatment,
seeds were immersed before planting into the fungal co-
nidial suspension (4.9 × 107 spores/ml) for 2 h with hand
stirring every 30 min (Omukoko and Turoop 2017). For
the soil drench, 5 ml of the spore suspension was applied
to the surface of the soil in each pot immediately after
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seed planting. Also, in the seedling drench, each seedling
was watered by 5 ml of the spore suspension. This treat-
ment was applied on 14-day seedlings according to Pus
(2017). The last method, foliar spray, was performed ac-
cording to Rondot and Reineke (2014), using 14-day cu-
cumber seedlings with a hand sprayer and an average of 5
ml of the spore suspension per plant was applied. To
avoid run-off of conidial spores to the soil, each pot was
covered with aluminum foil.
For adequate seed attachment, 2% of carboxy methyl

cellulose (CMC) was mixed with spores before seed
treatment by dissolving it first into 35–40 °C pre-
gelatinized water. After treatment, each pot was covered
with a plastic bag for 24 h to maintain a high level of hu-
midity. Thirty plants were cultivated for each treatment,
10 replicates for each sampling date. Control treatments
received sterile Tween water which was applied in the
same method as each treatment mentioned above. The
soil used for planting was previously autoclaved at
121 °C for 20 min. All pots were placed on benches at
room temperature. The experiment lasted 3 months, and
the recovery of B. bassiana was evaluated every 30 days.

Endophytic colonization assessment
Endophytic establishment of B. bassiana in cucumber
plants was evaluated under laboratory conditions ac-
cording to Barta (2011) as follows: for each sampling
date, 10 plants of each treatment were uprooted. Differ-
ent parts of each plant (leaves, stems, petioles, and roots)
were washed out with running tap water. These parts
were surface disinfected in a 2.5% sodium hypochlorite
for 3 min, 70% ethanol for 1 min, and rinsed 3 times in
sterile distilled water, 2 min for each time, then dried on
sterile filter paper. A 100 μl of the final rinsed water was
incubated on PDA for 2 weeks to determine whether the
surface disinfection process was successful. It was con-
sidered successful when no fungal growth was found.
After surface disinfection, sections of the leaves, stems,

petioles, and roots were cut into similarly small pieces
(about 4-mm pieces), using a sterile scalpel. Randomly, 6
pieces of each part for every plant were cultured on PDA
plates (9 cm dia.) and incubated at 25 ± 2 °C in darkness for
21 days and examined regularly to observe fungal growth.
When fungal growth was observed, it was removed to a
new Petri plate containing PDA medium, incubated, and
studied morphologically using a light microscope. The
colonization of different parts by B. bassiana was calculated
as the following: % colonization = [number of plant pieces
showing fungal growth/the total number of plant pieces] ×
100 (Petrini and Fisher 1986), and the ability of the studied
fungus to grow systemically to non-inoculated parts of the
plant was detected. All plants were monitored throughout
the experimental period. Physiological damages or disease

symptoms of inoculated plants relative to the control plants
were recorded.

Endophytic effects on fungal pathogenicity
For this purpose, the greater wax moth, Galleria mello-
nella L. (Lepidoptera: Pyralidae), larvae in the last instar
were used. It was reared in the laboratory as described by
Bhatnagar and Bareth (2004). Before endophytic establish-
ment experiments, G. mellonella larvae were placed in
contact with full-grown colonies of B. bassiana for a few
minutes and then moved to sterile Petri plates (12 cm
diameter) containing moist filter paper, kept in darkness
at 25 ± 2 °C for a week. Mortality (%) was recorded daily.
Five replicates and 5 larvae/replicate were prepared. The
control treatment was carried out without the fungus. The
same steps were repeated after endophytic establishment
experiments, using fungal colonies that were isolated from
plant tissues to compare the fungal pathogenicity before
and after fungal establishment in the plant.

Statistical analysis
Data were statistically analyzed by CoStat program, using
a completely randomized design. For each sampling date,
the variation test one-way ANOVA was used, the means
were compared, using the LSD test at p ≤ 0.05. To deter-
mine the best method of inoculation, one-way randomized
blocks with repeated measures were used.

Results and discussion
Presence and persistence of the endophyte in cucumber
plant
All fungal inoculation methods resulted in an endo-
phytic establishment of the fungus, B. bassiana, in cu-
cumber plants under the laboratory conditions (Table 1),
and the fungus survived inside the plant up to 90 days of
the inoculation (Fig. 1), whereas no presence of the fungus
was observed in the control plants, indicating the absence
of natural endophytes and contamination. No fungal
growth was recorded from the last rinsed water and in
plates with disinfected seeds, which demonstrated the ef-
fectiveness of surface disinfection procedure and confirmed
that the fungi growing from the plant pieces were
endophytes.
Although all inoculation methods were effective in intro-

ducing the isolate B195, into the plant, they were at differ-
ent levels of efficiency. Soil drench provided the highest
colonization of various cucumber parts, followed by seed
immersion and seed dusting, while foliar spray gave the
lowest values. This may be attributed to the plant’s growth
stage when it was infected with the fungus. The maximum
colonization was achieved, 30 days after treatment, then it
decreased gradually (F = 37.43, p < 0.0001 for inoculation
methods; F = 147.21, p < 0.0001 for days; and F = 3.49, p =
0.0007 for days × methods). Table 1 also shows the
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Table 1 Colonization of the fungus, Beauveria bassiana, in cucumber plant under laboratory conditions, 30 days post different
inoculation methods

Treatment Mean of colonization % ± SD

Stem Leaf Petiole Root

Seed dusting 73.61c* ± 5.69 77.5a ± 10.16 73.5a ± 9.7 31.57c ± 10.53

Seed immersion 83.33b ± 10.08 81.97a ± 9.53 57.8b ± 13.3 56.54ab ± 22.16

Soil drench 94.44 ± 7.32 80.25a ± 6.64 61.3b ± 13.15 68.26a ± 28.19

Seedling drench 29.83d ± 16.94 37.98c ± 23.02 37.95c ± 11.94 41.66bc ± 13.34

Foliar spray 33.51d ± 9.83 63.58b ± 14.2 55.3b ± 11.18 9.45d ± 19.96

*Different letters in the same column refer to significant differences (one-way completely randomized ANOVA), LSD test at p ≤ 0.05

Fig. 1 Re-isolating of the fungus, Beauveria bassiana, from cucumber tissues under the laboratory conditions after different periods of treatment
(a seed dusting, b seed immersion, c soil drench, d seedling drench, e foliar spray)
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differences in colonization rates among the methods in the
first sampling date of the experiment. The fungal
colonization in the upper parts of cucumber plants (leaves,
stems, and petioles) was higher than that in the roots (F =
36.540416, p < 0.0001 for different parts; F = 88.88, p <
0.0001 for days; and F = 2.608, p = 0.0172 for days × parts).
Stem colonization reached 94.44 ± 7.32, 85.67 ± 9.07,

and 73.68 ± 14.39% (± SD), after 30, 60, and 90 days post
soil drench, respectively, while it reached 16.45 ± 12.3
and 16.31 ± 2.87% (± SD) in foliar spray and seedling
drench, respectively, after 90 days of treatment (Fig. 1).
Colonization of leaves reached 77.5 ± 10.16, 81.97 ±

9.54, 80.25 ± 6.65, 37.98 ± 32.02, and 63.58 ± 14.21% (±
SD), respectively, for each of T1, T2, T3, T4, and T5,
after 30 days of inoculation (F = 17.46, p < 0.0001, LSD
5% = 12.549). However, it decreased to 50.75 ± 25.7,
30.63 ± 9.05, 54.99 ± 19.64, 54.36 ± 26.63, and 21.36 ±
13.17% (± SD), respectively, at the end of the experiment
(F = 5.92, p = 0.0006, LSD 5% = 18.0688) (Fig. 1).
Also, root colonization reached its maximum value

after 30 days of inoculation, and it was 68.26 ± 28.19 and
56.54 ± 22.16% (± SD), for soil drench and seed
immersion, respectively (F = 13.10, p < 0.0001, LSD 5%
= 17.895), while it was in the lowest level at 90 days of
treatment (F = 9.89, p < 0.0001, LSD 5% = 13.304), and
in foliar spray in general, whereas it was 9.45 ± 19.96,
3.33 ± 10.53, and 0% (± SD) in this method, after 30, 60,
and 90 days of treatment, respectively. No physical
symptoms of damage were observed in colonized plants.

Endophytic effects on fungal pathogenicity
Results showed no negative effects of the establishment
of the fungus, B. bassiana, in cucumber plants under la-
boratory conditions on its pathogenicity. On the 4th day
of the experiment, mortality reached 100% against the
last instar of G. mellonella larvae before and after intro-
ducing the fungus to the plant, while it was 0% in the
control. As a result of this study, the presence of the
fungus, B. bassiana, inside cucumber plants was con-
firmed by re-isolating it from stems, leaves, petioles, and
roots under laboratory conditions, and the persistence of
the fungus in the inner tissues was proved by its pres-
ence in all sampling dates.
Comparing the different inoculation methods showed

that when the fungus was introduced in the first stage of
plant growth, it was able to colonize the tissues more ef-
ficiently than when it was applied in the seedling stage.
This may be helpful for the control of pests that attack
cucumber plants early in the season, especially whiteflies.
The absence of any negative effects on the fungal patho-
genicity after introducing the fungus in the plant en-
courages us to study its role as an endophyte against
insect pests.

Despite the reduction in colonization rates with time,
B. bassiana remained present until the last sampling
date, either at high rates in soil drench and seed treat-
ment or at low rates in seedling drench and foliar spray.
The fungal persistence in plant tissues is considered an
important indicator that is taken into consideration in
pest control for season-long suppression. Rondot and
Reineke (2014) revealed the presence of B. bassiana in
grapevine plants up to 28 days after inoculation, while
Akello et al. (2007) confirmed that it could be re-
isolated from banana up to 120 days after inoculation. In
addition, Posada et al. (2007) isolated B. bassiana from
coffee tissues, 120 days post-inoculation by low rates.
Brownbridge et al. (2012) re-isolated B. bassiana from
pine seedlings, 120 days post root dip and seed coating
treatments, and after 270 days from treatments, but that
was from only one of 30 seedlings. Such studies help us
decide whether we need to introduce the fungus more
than once.
Colonization rates of the fungus, B. bassiana, resulted

in this study were higher than those obtained by Shaalan
and Ibrahim (2018) in cucumber plants, where recovery
of the fungus, B. bassiana, reached 58.3% for each of the
stems and leaves, and 50% for the roots, when it was ap-
plied as seed immersion.
On the other hand, the present study demonstrated

that the isolate B195, B. bassiana, could grow systemic-
ally from the point of inoculation to other parts of the
cucumber plant, considering that after the seeds were
treated with the fungus, it was isolated from leaves,
stems, roots, and petioles. In addition, when foliar spray
was applied, the fungus was isolated from the roots. In
this regard, Card et al. (2016) explained the growth and
development of endophytic microorganisms in numer-
ous plant hosts as either localized or systemic and noted
that many species of endophytes were only located
within the point of inoculation, whereas other studies
have demonstrated the systemic growth of B. bassiana
in cabbage plants (Pus 2017), wheat (Jaber 2018), and
corn (Kuzhuppillymyal et al. 2020). Although Yan et al.
(2015) suggested that systemic colonization is not neces-
sary for pest control by endophytes due to the secondary
metabolites produced by the fungus that enable the an-
tagonism mode (Begum and Tamilselvi 2016), others
thought that the systemic growth allows the fungus to
use more than one mode of action (Ownley et al. 2010;
Vidal and Jaber 2015). The present study indicated the
ability of B. bassiana to colonize the upper parts of cu-
cumber plants and that encourages studying its possible
effects against foliar pests.

Conclusion
The isolate B195, of the fungus, B. bassiana, successfully
colonized different parts of cucumber plants under
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laboratory conditions. Colonization (%) varied significantly
according to the inoculation method used, whereas soil
drench and seed immersion gave the highest recovery of
the fungus. Results showed that the fungus could grow
systemically inside different plant parts and could persist
in the cucumber plants for 90 days. No negative effects
were observed on the plants or the pathogenicity of the
fungus. This study is considered a preliminary research to
the utilization of B. bassiana, as an endophyte in cucum-
ber plants to reduce the density of insect pest populations.
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