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Formulation of Trichoderma asperellum
TV190 for biological control of Rhizoctonia
solani on corn seedlings
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Abstract

Environmental conditions affect biocontrol agents in a field, being appropriate formulations an alternative to
overcome this problem. Formulations based on Trichoderma asperellum TV190 were prepared by emulsified mineral
or vegetable oils, which protected spores from ultraviolet radiation, showing greater viability of 37–43% (mineral)
and 56–63% (vegetable) than the control (8–12%). These formulations improved an antagonism of T. asperellum on
Rhizoctonia solani under greenhouse conditions, reducing infected corn seedlings by 72% (mineral) and 59%
(vegetable). Necrotic spot size was reduced by 90.04% (mineral) and 87.29% (vegetable). A granular formulation,
prepared with degreased corn germ and T. asperellum spores, protected the corn seedlings from R. solani under
greenhouse conditions, with 73% reduction of infected plants and 93% reduction of necrotic spot size. Both
granular and liquid formulations were able to improve T. asperellum antagonism, suggesting that these formulations
could be included in agricultural pest control strategies.
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Background
Corn (Zea mays L.) is one of the most important cereals
in the world. The production of this crop is affected by
biotic and abiotic factors, where phytopathogenic fungi
play an important role by decreasing production levels
and generating global economic losses. The phytopatho-
genic fungus Rhizoctonia solani (Kühn) is a major pest
in corn attacking all belowground plant parts, including
seeds, hypocotyls, and roots (Da Silva et al. 2017). In
maize, R. solani is the causal agent of banded leaf and
sheath blight, albeit other symptoms like stalk lesions
(rind spotting), stalk breakage, clumping and caking of
styles (silk fibers), horseshoe-shaped lesions with band-
ing on caryopses, and sclerotial formation on styles,
glumes, cupules, and caryopses have been reported

(Chander and Payak 1982). Consequently, it has required
the implementation of control measures, especially the
chemicals, which have environmental and health impli-
cations (Kim et al. 2017).
Application of living organisms for pest control is an alter-

native to the use of agrochemicals. Biological control of R.
solani using Trichoderma spp. is a real alternative to the use
of agrochemicals. In in vitro tests, antagonism was registered
from Trichoderma spp. against this phytopathogen (Wang
and Zhuang 2019). Field applications of Trichoderma spp.
have demonstrated a positive effect on biocontrol of R. solani
(Barnett et al. 2019). However, field environmental conditions
are still one of the main limitations for the use of biocontrol
agents (Bashan et al. 2014). Parameters such as ultraviolet ra-
diation (UVR) (Costa et al. 2016), relative humidity (Swami-
nathan et al. 2016), temperature (Domingues et al. 2016), and
storage conditions (Locatelli et al. 2018) could have a negative
influence on inoculum viability. Using appropriate formula-
tions is a way to overcome this problem, which create
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microclimates that protect spores from adverse environmental
conditions (Doni et al. 2014).
Formulations of biological control agents can be classi-

fied in (a) dry powders, (b) granules, and/or (c) wettable
powders. Additionally, the use of adherents such as oil,
gelatin, and gum as well as humectants such as propyl-
ene glycol and polyethylene glycol has been used to re-
duce evaporation (Zhang et al. 2016).
Application of biocontrol agents using a suitable for-

mulation that protects the inoculum against UV radi-
ation is the main objective of this work, proposing liquid
and granular formulations based on Trichoderma asper-
ellum spores to control R. solani under in vitro and
greenhouse conditions.

Materials and methods
Fungal strains and seeds
Trichoderma asperellum (TV190) isolated from maize
fields of Monagas State, Venezuela (Pavone and Dorta 2015),
was obtained from the Centro de Biotecnología Aplicada
(CBA), Universidad de Carabobo, Venezuela. The strain was
maintained by alternate subculture on sterile soil and potato
dextrose agar (PDA) plates. R. solani strain P2AB2 (AG1-IA)
was donated by Dr. Alex González (Fundación DANAC)
San Felipe, Venezuela, and maintained by subculture on
PDA plates. White corn seeds H2020 were donated by
“Semillas Híbridas de Venezuela C.A.” (SEHIVECA).

Granulated formulation
Degreased corn germ (DCG), donated by “Refinadora de
Maíz Venezolana” (REMAVENCA) Aragua State,
Venezuela, was sterilized at 120 °C for 30min in an auto-
clave and inoculated with the necessary volume of a T.
asperellum spore suspension in water (106 spores/g) to
reach a final water content of 50% (w/w). Preparation was
mixed and processed through a meat grinder with a 4-mm
screen. Finally, the preparation was air-dried to a moisture
content of 8% (w/w) and stored at 8 °C for 24 h until use.

Liquid formulation
Formulations were prepared using 20ml of vegetal oil
(VO) Vatel®, 10ml of Surfatron®, and 970ml of water. Al-
ternatively, emulsified mineral oil (MO) Aceite Blanco®
was diluted in water according to the manufacturer’s in-
structions (20ml/l). Lignosulfonate (1% w/v) was also
added as UVR filter. Concentration of T. asperellum was
adjusted to 106 spores/ml. A T. asperellum spore suspen-
sion in pure water was used as the negative control. Liquid
formulations were used immediately after preparation.

Viability of T. asperellum spores
Water agar plates (1.7% w/v) were inoculated with 0.1
ml spore suspensions (formulated or not). Plates were
incubated at 25 ± 2 °C for 20 h in the dark. Germinated

spores were counted, using a stereoscopic microscope
(× 400), in 3 individual plates (replicates), 100 spores in
each one.

Effect of ultraviolet radiation (UVR) on T. asperellum
spores
In plates prepared as in viability assays, spores were ex-
posed to UVR in uncovered plates. Exposition to UVR
was performed using a lamp Model UVLMS-38, UVP®
(Ultra-Violet Products), with wavelengths of 254 nm
(UV-C) and 302 nm (UV-B) applied separately. Inten-
sities used for UV-B and UV-C were 1900 μW/cm2 and
250 μW/cm2 for 1, 2, and 5 min, respectively. UVR mea-
surements were performed by a UVP® Model UVX radi-
ometer, equipped with 3 sensors (Models UVX-25,
UVX-36, and UVX-31). After irradiation, plates were in-
cubated for 18–24 h and viability was evaluated.

Effect of liquid and granular formulations on R. solani
White corn seeds were planted in bags (15 cm diameter
× 20 cm tall) in soil, and irrigated daily. After 10 days, a
R. solani scletoria, obtained from PDA plates grown for
8 days, was placed on a plant bud. Immediately, 1.5 ml
of the liquid formulations (emulsions with 106 T. asper-
ellum spores/ml) or a granule of the solid formulation
(approximately 0.1 g) was added to the infected bud.
Water was sprayed daily to maintain high relative hu-
midity. Plants with R. solani sclerotia without Tricho-
derma and emulsions or granules without T. asperellum
spores were used as controls. Treatments consisted of
30 plants. After 3 to 8 days in open greenhouse condi-
tions (average temperature 30 °C), the number of in-
fected plants and the necrotic spot size produced by R.
solani on leaf were evaluated. The reduction in the num-

ber of infected plants ½ð1− number of infected plants in treatments
number of infected plants in control Þ

�100� and the decrease in necrotic spot size (NSS)
caused by T. asperellum ½ð1− NSS in treatments

NSS in control Þ � 100� were
also calculated.
Despite R. solani is a soil-borne pathogen, sclerotia was

inoculated on the plant bud because it demonstrated a high
infection rate on corn plants than the experiments inoculat-
ing R. solani on soil, with very clear and evident symptoms.
Additionally, using R. solani as leaf pathogen was more
suitable to evaluate the effect of UVR. This method is very
convenient albeit it is clear to be only an approach previous
to field validation on natural conditions.

Statistical analysis
Mean and standard error were calculated for each treat-
ment. Variance analysis (ANOVA) was performed in
order to detect significant differences between treatments.
In case of not fulfilling the assumptions for the ANOVA,
non-parametric tests were performed (Kruskal-Wallis). A
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comparison of means (Tukey) was also performed. The
statistical package used was Past 3.1 (Hammer et al. 2001).
All experiments were repeated three times.

Results and discussion
Oil formulations
One of the first steps for implementing the formulations
with biocontrol fungi was to determine its compatibility
with the microorganisms involved in the study. The per-
centage of T. asperellum TV190 spore germination in oil
formulations without irradiation were 95.32, 96, and
97.66%, for the mineral oil (MO), vegetable oil (VO),
and control, respectively (Figs. 1 and 2). It was observed
that T. asperellum and emulsions seemed to be compat-
ible, with non-significant differences (F = 0.018; df = 4; P
= 0.99) between spore germination in formulations with
mineral or vegetable oil. For the treatments with spores,
exposed to UVR, a negative effect was evident on spore
viability. Statistical differences were found in treatments
with MO under UVB (F = 109; df: 32; P < 0.05) and
UVC (F = 132.82; df: 32; P < 0.05) and VO under UVB
(F = 176.3; df: 32; P < 0.05) and UVC (F = 132.39; df: 32;
P < 0.05). In general, UVR decreased spore viability to
8–12% levels after 5 min of treatment on unformulated
T. asperellum spores (NF), the effect being dependent
on time exposure (Figs. 1 and 2).
However, in systems treated with oil formulations, par-

tial protective effects were detected. After 5 min UVR
exposure, viability decreased to 43–56% in systems with
MO and to 56–63% in VO systems (Figs. 1 and 2). Once
again, the negative effect was dependent on the exposure
time. In treatments with lignosulphonate, non-
significant differences were detected in the combination
with VO under the same time of exposure to UVR (F =
0.16; df = 5; P = 0.71) (Fig. 2), while in the treatments
with MO, differences were detected only when spores
were exposed to UVB (F = 24.89; df = 5; P < 0.05) or
UVC (F = 4.84; df = 5; P < 0.05) for 5 min (Fig. 1).
Results strongly suggested a protective effect of oil for-

mulations and lignosulfonate to T. asperellum spores,
when irradiated with UVR under laboratory conditions.
Exposure time was a crucial parameter because spore
viability was drastically reduced, when exposure in-
creases from 1 to 5 min. A greater negative effect of
UV-C radiation was also evident in spore viability. The
UVR effect on fungal metabolism was related to DNA
degradation in conidia and mycelium of Aspergillus
nidulans (Braga et al. 2015). In addition, Seyedmousavi
et al. (2014) reported that UVR affected proteolytic
activity, cell growth, and carbohydrate synthesis in
Candida albicans. Besides, it had also been reported that
UV-B inhibited various fungal processes such as spore
germination and hyphae elongation (Suthaparan et al.
2016) and affects negatively several fungi such as

Botryris cinerea (Janisiewicz et al. 2016). Mutagenesis
has been induced using UVR to obtain modifications in
the genetic structure of two Trichoderma biocontrol
agents, T. virens and T. asperellum (Alfiky 2019). If
exposure time was longer, DNA damage will be great,
producing a higher rate of mutations and reduced spore
germination (Begum et al. 2009). UV-C radiation
reduced the spore germination by more than 80% (Bell
and Wheeler 1986). A decrease in spore viability by UVR
depends on spore coloration, the medium in which it was
evaluated, and time of exposure to radiation, the darker the
spore, the greater its resistance to UV radiation, probably
due to melanin that protects it from this radiation
(Carzaniga et al. 2002). The photoprotective properties of
melanin were considered to be important for the survival
and longevity of spores (Bell and Wheeler 1986).
A protective effect of oil formulations against UVR has

also been reported in other studies (Fernandes et al. 2015),
observing mineral and vegetable oil protection on ento-
mopathogenic fungi spores against UVR. Several oil-based
formulations with T. asperellum have been developed to
control cacao black pod disease caused by Phytophthora
megakarya, in which the half-life of the conidia reached
22.5 and 5 weeks in aqueous and oil suspension, respect-
ively (Mbarga et al. 2014). Oil and aqueous formulations
have been proven to control frosty pod rot caused by
Moniliophthora roreri on cocoa (Crozier et al. 2015), find-
ing that an inverted corn oil formulation significantly en-
hanced cocoa yield, providing a promising model for
optimizing Trichoderma-based biocontrol strategies. Fi-
nally, some vegetable oils are able to absorb UV radiation
(Montenegro and Santagati 2019) suggesting the possibil-
ity to use them as UV blockers.

Greenhouse assays
The ability of T. asperellum formulations (granular and
liquid) to control R. solani was evaluated by determining
the number of infected plants and necrotic spot size
(NSS) on corn leaves. Results showed statistical differ-
ences in treatments with T. asperellum (F = 1875.892; df
= 29; P < 0.05) producing a decrease in the number of
infected plants after being treated with T. asperellum
(Fig. 3). The number of infected plants was similar (70%)
in treatments with oil formulations (MO and VO) and
with granules (G), both without T. asperellum, and in
the treatment with R. solani alone (R) (F = 13.63; df = 8;
P = 0.2). After applying T. asperellum spores to oil for-
mulations (MOT and VOT) or to granules (GTR), the
percentage of infected plants decreased to 20, 29, and
19%, respectively. The number of infected plants was re-
duced by 72% (MOT), 59% (VOT), and 73% (GTR).
Necrotic spot size (NSS) produced by R. solani on

corn seedlings was another evaluated parameter (Fig. 4).
Treatments without T. asperellum resulted in spot sizes
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larger than 20 mm (MO = 26.8 mm, VO = 28.31 mm,
GR = 20.33 mm, R = 27.53 mm). In contrast, by using T.
asperellum without formulation, NSS was 12.23 mm.
When T. asperellum was included in oil formulations,
spot size decreased to 2.67 mm (MOT) and 3.6 mm
(VOT), with significant differences in relation to other
treatments (H = 113.972; df = 9; P < 0.05), but not with
each other (F = 0.222; df = 1; P = 0.64). The decrease in
spot size caused by T. asperellum was 55.58%, when ap-
plied alone, compared to 90.04 and 87.29%, when

applied with MO or VO, respectively. In GTR formula-
tion, spot size decreased to 1.36 mm (93.32%).
In greenhouse assays, R. solani incidence was evalu-

ated when liquid and granular formulations were ap-
plied. However, it is not possible to determine if the
effect observed is due to the protection they exert
against the UVR, since it was not possible to determine
how much radiation these spores received. Obtained re-
sults were similar to those of Battan (2004) who used an
oil formulation of T. harzianum to evaluate its

Fig. 1 Viability of Trichoderma asperellum spores in formulations with mineral oil (MO) and exposed to UVR. a Spores in MO + UV-C. b Spores in
MO + UV-B. MO, spores + MO without UVR; MOL, MO + lignosulfonate without UVR; NF, no formulation. Numbers in each treatment indicate
exposure time to UVR (minutes). Letters indicate statistical differences (P < 0.05)
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biocontrol effect on Rhizopus stolonifer, Botrytis cinerea,
and Penicillium expansum, fungi that affected apple,
peach, pear, and strawberry. Although it was not studied
in this work, one of the objectives of granular formula-
tion was to serve as a substrate for fungal sporulation to
increase spore number. The substrate used for granular
formulation (DCG) has been characterized by the manu-
facturer containing 65.06% carbohydrates, 13.82% pro-
tein, 10.97% water content, 5.37% crude fiber, 4.19% of
ash, and 0.59% of fats. It was also rich in minerals such as
phosphorus, magnesium, iron, and zinc. DCG could be an

excellent substrate for sporulation of several filamentous
fungi. In this sense, a granulated formulation with DCG
using the entomopathogenic fungus Nomurea rileyi spores
was used to increase inoculum over 600 times and to pro-
tect spores from UVR (Pavone et al. 2009), probably be-
cause spores were immersed within a granule matrix,
where UVR cannot reach them. Protection exerted by
granule against UVR could be important for maintaining
inoculum viability in the field.
Extruded granular formulations, containing rice flour, glu-

ten, and biomass of Gliocladium virens and Trichoderma

Fig. 2 Viability of Trichoderma asperellum spores in oil formulations with vegetable oil (VO) and exposed to UVR. a Spores in VO + UV-C. b Spores
in VO + UV-B. VO, VO without UVR; VOL, VO + lignosulfonate without UVR; NF, no formulation. Numbers in each treatment indicate exposure
time to UVR (minutes). Letters indicate statistical differences (P < 0.05)
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Fig. 3 Corn seedlings infected with R. solani. MO, mineral oil without Trichoderma asperellum or Rhizoctonia solani; VO, vegetable oil without T.
asperellum or R. solani; MOT, mineral oil with T. asperellum; VOT, vegetable oil with T. asperellum; G, granular formulation without T. asperellum or
R. solani; GTR, granular formulation with T. asperellum; GR, granular formulation without T. asperellum; R, R. solani without treatment; T T.
asperellum without formulation. Letters indicate statistical differences

Fig. 4 Necrotic spot size produced by Rhizoctonia solani in corn seedlings. MO, mineral oil without Trichoderma asperellum or R. solani; VO,
vegetable oil without T. asperellum or R. solani; MOT, mineral oil with T. asperellum; VOT, vegetable oil with T. asperellum; G, granular formulation
without T. asperellum or R. solani; GTR, granular formulation with T. asperellum; GR, granular formulation without T. asperellum; R, R. solani without
treatment; T, T. asperellum without formulation. Letters indicate statistical differences
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spp. among other components reduced eggplant damping-
off caused by Rhizoctonia solani (Lewis and Larkin 1997).
Formulations prepared with several components like talc
and lignite were produced for seed treatment and control of
tomato damping-off caused by Pythium aphanidermatum,
in which active colonization of T. harzianum in the rhizo-
sphere was observed (Jayaraj et al. 2006). Microencapsulation
has been proposed to prolong shelf life and enhance applica-
tion efficiency of Trichoderma (Cumagun 2014) focusing on
seed treatment using solid matrix priming, liquid coating,
and double coating.
It will be important to test these formulations under

field conditions to obtain conclusive results that will
allow their use as commercial products. Formulation
compatibility with other control measures such as insec-
ticides and herbicides commonly used in field should
also be evaluated. Due to its mode of action and good
performance under in vitro and greenhouse conditions,
protecting spore against UVR and plants from R. solani,
oil and granular formulation seems to have great poten-
tial to be incorporated in Integrated Pest Management
Programs.

Conclusions
Obtained results evidenced a great potential to use T.
asperellum in liquid and granular preparations. Oil for-
mulations efficiently protected T. asperellum spores
from UVR (UV-B and UV-C) in vitro. Lignosulphonate
enhanced spore protection against UVR, only when ap-
plied with MO. It was also verified that oil and granu-
lated formulations improve T. asperellum performance
in protecting corn seedlings from R. solani attack under
greenhouse conditions. Fungal formulations should be-
come a standard in biocontrol applications in order to
increase efficacy.
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