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Abstract 

Background The western flower thrips (WFT), Frankliniella occidentalis Pergande (Thysanoptera: Thripidae), 
is an important polyphagous pest in both greenhouses and fields. Due to its wide range of host plants and short life 
cycle, the pest causes overwhelming damage and has led to the destruction of many crops. The combined use 
of entomopathogenic microorganisms could be an important option to overcome the difficulties in controlling WFT. 
The virulence of thirty local entomopathogen isolates was tested on WFT, and possibilities of combined application 
for WFT control were investigated.

Results All isolates were virulent for both the second larval stage and the adult stage of WFT. Serratia marcescens 
Se9 was the most virulent bacterial isolate with a mortality of 54 and 69.6% against the second larval and the adult 
stages of WFT, respectively. The  LC50 values of the Se9 isolate were determined to be 4 ×  106 cfu/ml for the second 
larval stage and 6.3 ×  106 cfu/ml for the adult stage. Among the fungal isolates, Metarhizium flavoviride As18 showed 
a mortality rate of 92.1 and 74.5% against the second larval and the adult stages of WFT, respectively. The  LC50 value 
was determined to be 1.6 ×  104 and 7.1 ×  104 conidia/ml for the second larval and adult stages of WFT, respectively. 
The combined application of S. marcescens Se9 and M. flavoviride As18 at different concentrations generally 
performed better than single treatments, indicating an additive or synergistic interaction. While the single treatment 
with S. marcescens and M. flavoviride caused a mortality of 20.4 and 49.5%, respectively, the combined application 
(S. marcescens  LC25; M. flavoviride 100 ×  LC25) resulted in a mortality of 95.7% of the second larval stage. Similarly, 
the combined application caused 96% mortality in the adult stage, while the single treatments with S. marcescens 
and M. flavoviride caused 11.3 and 61.3% mortality, respectively.

Conclusion The study showed that the combined application of S. marcescens  (LC25) and M. flavoviride 
 (LC25 × 100) resulted in synergism against both second larval and adult stages of WFT. This is the first study to show 
that the combination of S. marcescens and M. flavoviride had synergistic potential to suppress the WFT population. In 
future studies, these microorganisms should be formulated together as biopesticides and tested under greenhouse 
or field conditions.
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Background
The western flower thrips, Frankliniella occidentalis 
Pergande (WFT) (Thysanoptera: Thripidae), is an 
important destructive sucking pest of a wide range of 
more than 250 plant species from 65 families (Reitz 
2009). They not only cause direct feeding damage to 
leaves, flowers and fruits, but are also the most effective 
vectors of tospoviruses such as tomato spotted wilt virus 
(TSWV) and impatiens necrotic spot virus (He et  al. 
2020). Biological characteristics such as polyphagous, 
short development times, high reproductive potential, 
high dispersal ability and competitiveness make the pest 
difficult to control (Mouden et al. 2017).

Control of WFT is mainly based on the frequent 
use of broad-spectrum insecticides, including 
organophosphates, carbamates and pyrethroids. The 
overuse of insecticides has led to the development of 
resistant populations to more than 30 active ingredients 
(Mavridis et  al. 2023). In addition, toxicity to beneficial 
nontarget organisms, environmental pollution and 
residue problems on marketable crops limit their use 
(Mouden et  al. 2017). For these reasons, the search for 
reliable biological control methods that can protect the 
ecological environment and effectively and continuously 
control the population of WFT has become an important 
area of research for the integrated control of WFT.

Entomopathogenic microorganisms are natural means 
of controlling insects’ populations because they are 
naturally pathogenic to a range of insect pests and are 
derived from nature; therefore, they have little to no 
adverse effects on the environment. Entomopathogenic 
viruses and bacteria needed to be ingested or enter 
the host body in some way to cause the infection, 
but entomopathogenic fungi (EPF) directly infect 
through insect cuticle and do not require ingestion to 
cause infection (Mannino et  al. 2019). This offers an 
advantage in the control of sap‐feeding insect species 
with piercing‐sucking mouthparts such as WFT. 
Several EPF, Lecanicillium lecanii, Beauveria bassiana, 
Metarhizium anisopliae, M. brunneum, M. flavoviride, 
Neozygites parvispora and Isaria fumosorosea, have been 
successfully used to control WFT (Skinner et  al. 2012). 
Among them, B. bassiana and M. anisopliae are the most 
effective for controlling WFT (Li et al. 2021).

EPFs have been shown to control insect pests but 
have a relatively slow action compared to chemical 
insecticides, as fungal pathogens have a latent period 
in their host after infection (Sharma and Sharma 2021). 
Another potential disadvantage of EPFs is their relatively 
short shelf life compared to conventional chemical 
insecticides. To overcome this disadvantage, EPFs have 
been combined with adjuvants, insecticides, predatory 
mites or other entomopathogens. For example, Zhang 

et al. (2021) showed that the combined use of predatory 
mites Stratiolaelaps scimitus and granular formulation of 
B. bassiana improved control of WFT in eggplant under 
greenhouse conditions. Similarly, Kivett et  al. (2016) 
showed that the combination of M. anisopliae and insect 
growth regulator azadirachtin improved control of WFT 
under laboratory conditions. Furthermore, Ge et  al. 
(2020) demonstrated that M. anisopliae in combination 
with sublethal doses of conventional insecticide 
imidacloprid had a better control effect on WFT than the 
individual fungal biocontrol agent. However, synergism 
between EPF and bacteria against WFT has not been 
reported.

Therefore, the main objective of this study was to screen 
the virulence of thirty indigenous entomopathogen 
isolates against second larval and adult stages of WFT 
and to show the possibilities of the combined use of the 
most virulent bacterium and fungus in the biocontrol of 
WFT.

Methods
Rearing western flower thrips
WFT collected from infested greenhouses in Antalya, 
Turkey, were used to establish a laboratory colony. 
To obtain uniformly aged thrips for the experiments, 
synchronized rearing of WFT was performed on 
kidney beans (Phaseolus vulgaris L.) in 1-l glass jars 
(18  cm × 10  cm) with snap lids fitted with fine-mesh 
ventilation holes. Rearing jars were maintained in 
a climate chamber at 25  °C, 70% RH and L16: D8 h 
photoperiod (Price et  al. 2022). The second larval stage 
and adults were the target used in bioassays.

Entomopathogens
Entomopathogens were obtained from the 
Entomopathogen Culture Collection of the Department 
of Biology, Karadeniz Technical University in Trabzon, 
Turkey. Thirty entomopathogenic microorganisms 
isolated and defined in previous studies and whose 
insecticidal properties were determined were used for 
the study (Table 1).

Frozen glycerol stock suspension of bacteria (100  µl) 
was spread on nutrient agar medium to obtain single 
colonies for each isolate and incubated overnight at 
30  °C. A single pure colony was inoculated into 10  ml 
nutrient broth medium. After incubation, the culture 
was centrifuged at 5000  rpm for 5  min to remove the 
medium. The pellet was washed with sterile phosphate 
buffer solution (PBS) and resuspended in sterile distilled 
water. Then the bacterial density was measured at  OD600 
(optical density) and adjusted to 1.89 (≈ 1.8 ×  109 cfu/ml) 
(Ben-Dov et  al. 1995). The bacterial suspensions were 
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then serially diluted to  108 cfu/ml and stored at 4 °C until 
used in the bioassays.

Frozen glycerol stock suspension of fungi (100 µl) was 
grown for 3  days at 25  °C by spreading on Saboraud 
Dextrose Agar (SDA) medium. A single colony was 
inoculated onto fresh SDA medium and sporulated for 
2 weeks at 25  °C. The conidia were harvested by adding 
10  ml of sterile distilled water containing 0.01% Tween 
80 to the sporulating fungi and scraping the conidia from 
the agar surface with a sterile cell spreader. The resulting 
suspension was vortexed for 1  min to homogenize it. 
The suspension was then filtered through a double 
layer of sterile cheesecloth into 50-ml sterile Falcon 
tubes to remove mycelium and agar pieces. The conidial 
concentration was determined with the Neubauer 
haemocytometer under the light microscope and 
adjusted to concentration of  107 conidia/ml.

Screening test
The efficacy of the entomopathogens was tested 
separately against the second larval stage and the adult 
WFT under laboratory conditions. The tests were 
carried out according to IRAC test method No. 10. 
Bean leaves were placed in plastic boxes (15 × 15  cm), 
which were disinfected with sodium hypochlorite (1%). 
Moist cotton was used to prevent the leaves from drying 
out. Thirty second instar larvae were transferred to the 
leaves in the boxes using a suction tube. 1  ml of the 
prepared bacterial  (108 cfu/ml) and fungal  (107 conidia/
ml) suspensions was sprayed onto the leaves using a 
mini hand sprayer. Sterile water was used as control for 
bacteria and sterile water with 0.01% Tween80 for fungi. 
Experiments were performed according to a completely 
randomized experimental design with 4 replicates, where 
each box was scored as a single plot and replicated 2 
times. Bioassays were performed in a climate chamber 

Table 1 Entomopathogens used in this study

Strain Species Origin References

Bacterial isolates Sn10 Bacillus thuringiensis Sesamia nanogrioides Eski et al. (2015)

Se13 Bacillus thuringiensis Spodoptera exigua Eski et al. (2018)

MnD Bacillus thuringiensis Malacosoma neustria Katı et al. (2005)

Xd3 Bacillus thuringiensis Xyleborus dispar Sezen et al. (2008)

Ta1 Bacillus thuringiensis Tuta absoluta Eski et al. (2024)

Ta6 Bacillus thuringiensis Tuta absoluta Eski et al. (2024)

Se9 Serratia marcescens Spodoptera exigua Eski et al. (2018)

Sn14 Serratia marcescens Sesamia nanogrioides Eski et al. (2015)

Sn8 Bacillus safensis Sesamia nanogrioides Eski et al. (2015)

Cq1 Bacillus safensis Cimbex quadrimaculatus Cakici et al. (2015)

Ar2 Bacillus polymyxa Anoplus roboris Demir et al. (2002)

Cq2 Bacillus subtilis Cimbex quadrimaculatus Cakici et al. (2015)

Tp11 Bacillus pumilus Thaumetopoea pityocampa İnce et al. (2008)

Se2 Lysinibacillus. macroides Spodoptera exigua Eski et al. (2018)

Ld4 Pseudomonas putida Leptinotarsa decemlineata Muratoğlu et al. (2011)

Fungal isolates As2 Metarhizium flavoviride Amphimallon solstitialis Biryol et al. (2020)

As18 Metarhizium flavoviride Amphimallon solstitialis Biryol et al. (2020)

KTU2 Metarhizium brunneum Soil Sevim et al. (2010b)

Gg12 Metarhizium brunneum Gryllotalpa gryllotalpa Sönmez et al. (2016)

BL5 Metarhizium brunneum Soil Eski and Gezgin (2022)

BL23 Metarhizium brunneum Soil Eski and Gezgin (2022)

KTU24 Beauveria bassiana Thaumetopoae pityocampa Sevim et al. (2010a)

KTU57 Beauveria bassiana Rhynchites baccus Sevim et al. (2014)

Hp4 Beauveria bassiana Hypera postica Yucel et al. (2018)

Pa4 Beauveria bassiana Pristiphora abietina Biryol et al. (2021)

Gg1 Beauveria bassiana Gryllotalpa gryllotalpa Sönmez et al. (2016)

B8 Beauveria bassiana Soil Unpublished data

Pa3 Lecanicillium muscarium Pristiphora abietina Biryol et al. (2021)

KTU42 Isaria fumosorosea Soil Sevim et al. (2010b)

KTU1 Isaria fumosorosea Soil Sevim et al. (2010b)
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with a temperature of 26  °C, 70% relative humidity and 
a 16/8 photoperiod (light: dark). The bioassays were 
also performed with the adult stage described above. 
Mortality was monitored daily for 5  days, followed by 
rate corrections according to the Abbott formula (Abbott 
1925). Data were then subjected to analysis of variance 
(ANOVA), followed by Tukey’s HSD multiple comparison 
test using SPSS statistical software to assess differences 
between treatments. In addition, the estimates of the 
median lethal time  (LT50) and their confidence limits 
were calculated using probit analysis (Finney 1971).

Concentration response test
Concentration experiments were carried out with 3 
bacteria and 3 fungi that had the lowest  LT50 value and 
the highest insecticidal effect on the larvae and adults of 
the pest. Six different concentrations of microorganisms 
were obtained by tenfold serial dilution of each stock 
suspension. The bacterial isolates S. marcescens Se9, B. 
safensis Cq1 and B. thuringiensis Sn10 were prepared 
at concentrations ranging from  108 to  103  cfu/ml, and 
fungal isolates M. flavoviride As18, B. bassiana Hp4 and 
L. muscarium Pa3 at concentrations ranging from  108 
to  103  conidia/ml. The bioassays were then performed 
as indicated in the screening tests. The median lethal 
concentrations  (LC50) of the microorganisms were 
calculated for the larvae and adult stages of WFT using 
probit analysis in the statistical software SPSS.

Determination of Synergism
Metarhizium flavoviride As18 and S. marcescens 
Se9, which had the lowest  LC50 value, were used to 
investigate the synergistic effect of the isolates on WFT. 
The combinations of isolates were prepared at different 
concentrations (Table  2) and tested separately for the 
second larval stage and the adult stage of WFT as 
described in the screening test. The co-toxicity factors 
were calculated using the following equation:

where Oc is the mortality caused by the combination 
application and Oe is the sum of the mortality rates of the 
isolates making up the combination alone. Values > 20 
represent synergistic effect, − 20 ≤ values ≤ 20 represent 
additive effect and values < − 20 represent combinations 
that are antagonistic (Ma et al. 2008).

Results
As a result of the screening tests performed with 
entomopathogenic bacteria, it was found that all bacteria 
are pathogenic for the larvae and adults of WFT, but 
their virulence was different. The highest virulence on 
the second larval stage at a concentration of  108 cfu/ml 

CTF = (Oc−Oe)/Oe × 100.

was observed with the isolates S. marcescens Se9 (54%) 
and B. safensis Cq1 (51%). The other isolates caused less 
than 50% mortality (F = 108.13; df = 14; p < 0.05) (Fig. 1). 
The median lethal time  (LT50) for bacterial isolates with a 
concentration of  108 cfu/ml on the second larval stage of 
WFT was determined by probit analysis, and the lowest 
 LT50 values were 4.67 (S. marcescens Se9), 4.79 (B. safensis 
Cq1) and 4.87 (B. thuringiensis Sn10) days (Table 3). The 
 LC50 values of these isolates for the second larval stage 
were determined to be 4 ×  106, 3.9 ×  106 and 8.3 ×  107 cfu/
ml, respectively (Table 4). These isolates showed highest 
virulence also on the adult stage. S. marcescens Se9, B. 
safensis Cq1 and B. thuringiensis Sn10 caused 69.54, 

Table 2 Median lethal time  (LT50) of bacterial isolates at a 
concentration of  108 cfu/ml for the second larval and adult 
stages of WFT

* For each isolate, the  LT50 value for larvae is given in the first row and for adults 
in the second row

SE Standard error, df degree of freedom, X2 Chi-square

Isolates LT50 (FL, %95) (days) Slope ± SE LT95 df X2

Sn10 4.87 (4.52 –5.43)* 0.8 ± 0.055 7.01 3 6.62

4.73 (4.58 –4.91) 1.0 ± 0.051 6.91 3 2.61

Se13 6.13 (5.74 –6.72) 0.6 ± 0.073 8.74 3 2.07

6.06 (5.69 –6.61) 0.7 ± 0.072 8.65 3 2.66

MnD 5.51 (5.26 –5.85) 0.7 ± 0.064 7.88 3 3.88

5.55 (5.29 –5.90) 0.6 ± 0.061 8.02 3 4.39

Xd3 5.53 (5.29 –5.87) 0.7 ± 0.068 7.80 3 2.39

5.70 (5.41 –6.10) 0.6 ± 0.062 8.24 3 4.16

Ta1 6.33 (5.88 –7.13) 1.0 ± 0.114 8.53 3 0.91

6.36 (5.90 –7.16) 1.0 ± 0.103 8.70 3 0.54

Ta6 6.11 (5.73 –6.75) 0.9 ± 0.117 8.14 3 0.50

7.07 (6.39 –8.26) 0.5 ± 0.073 10.3 3 3.11

Se9 4.67 (4.50 –4.86) 0.8 ± 0.044 7.10 3 2.88

4.35 (4.23 –4.47) 1.3 ± 0.053 6.18 3 3.68

Sn14 5.01 (4.84 –5.21) 1.0 ± 0.061 7.06 3 3.18

5.90 (5.22 –7.55) 0.6 ± 0.059 8.71 3 6.31

Sn8 5.67 (5.41 –6.06) 0.7 ± 0.076 7.90 3 1.50

5.97 (5.61 –6.48) 0.6 ± 0.061 8.75 3 5.11

Cq1 4.79 (4.65 –4.96) 1.0 ± 0.058 6.78 3 4.46

4.50 (4.23 –4.86) 1.0 ± 0.055 6.38 3 6.22

Ar2 6.41 (5.93 –7.34) 0.6 ± 0.124 8.66 3 3.23

5.91 (5.57 –4.40) 0.6 ± 0.062 8.63 3 5.05

Cq2 5.64 (5.38 –6.01) 0.7 ± 0.078 7.80 3 1.00

5.86 (5.53 –6.33) 0.6 ± 0.061 8.57 3 5.02

Tp11 5.68 (5.42 –6.07) 1.0 ± 0.086 7.75 3 1.85

6.19 (5.42 –8.18) 0.6 ± 0.061 9.14 3 5.63

Se2 5.77 (5.49 –6.19) 1.0 ± 0.095 7.78 3 1.28

6.12 (5.73 –6.70) 0.6 ± 0.064 8.94 3 4.20

Ld4 6.31 (5.86 –7.10) 1.0 ± 0.118 8.46 3 0.57

6.40 (5.91 –7.38) 1.0 ± 0.140 8.47 3 1.80
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62.5 and 54% mortality, respectively, on adult stage 
(Fig. 1). Virulence of the other isolates ranged from 6.25 
to 29 (F = 122.89; df = 14; p < 0.05). The lowest  LT50 value 
for adult stage was obtained with S. marcescens Se9, B. 
safensis Cq1 and B. thuringiensis Sn10 isolates at 4.35, 4.5 
and 4.73 days, respectively (Table 3). The  LC50 values of 
these isolates are given in Table 4.

All fungi tested were pathogenic to the second larval 
stage of WFT. The virulence of the fungal isolates 
ranged from 8.7 to 92.1% (F = 144.4; df: 14; p < 0.05) 
(Fig.  2). Among the isolates, the virulence of M. 
flavoviride As18, L. muscarium Pa3 and B. bassiana 
Hp4 was 92.1, 85.1 and 86.1%, respectively. The  LT50 
values of the isolates for the second larval stage were 
3.37  days for M. flavoviride As18, 3.68  days for B. 
bassiana Hp4 and 3.87  days for L. muscarium Pa3 
(Table  4). As in the second larval stage, the isolates 
with the highest virulence on adult stage were M. 

flavoviride As18 (74.5%), B. bassiana Hp4 (70.5%) and 
L. muscarium Pa3 (69.2%) (Fig.  2). The  LT50 values at 
a concentration of  107 conidia/ml for M. flavoviride 
As18, B. bassiana Hp4 and L. muscarium Pa3 were 
determined to be 4, 4.19 and 4.23  days, respectively 
(Table  4). The  LC50 values of these isolates for the 
second larval stage and adults are shown in Table 5.

Binary combinations of S. marcescens Se9 and M. 
flavoviride As18 were used to determine the synergistic 
effect, using the co-toxicity factor (CTF) as a criterion. 
The CTF values for combination 3 were + 36.92, 
indicating a strong synergy on the second larval stage. 
The other combinations with CTF values < + 20 showed 
an additive or antagonistic effect (Table  6). Moreover, 
combination 2 and 3 showed a synergistic effect on 
the adult stage of WFT with CTF values of + 22.49 
and + 32.38, respectively. Combination 7 showed an 
antagonistic effect. The other combinations with CTF 

Fig. 1 Virulence of bacterial isolates on the second larval and adult stages of WFT at a concentration of  108 cfu/ml. The bars show the means 
of mortality rates obtained from bioassays with four replicates, corrected according to the Abbott formula. The error bars show the standard 
deviation between the mean values. The different lowercase and uppercase letters indicate statistical differences (ANOVA, Tukey’s HSD test, p < 0.05)

Table 3 Median lethal concentration  (LC50) of bacterial isolates for the second larval and adult stages of WFT

SE Standard error, df degree of freedom, X2 Chi-square

Insect stage Isolates LC50 (FL, %95) (cfu/ml) Slope ± SE LC95 df X2

Larvae Se9 4.0 ×  106 (1.0 ×  106 – 3.0 ×  107) b 0.5 ± 0.022 4.18 ×  1011 4 15.55

Sn10 8.3 ×  107 (3.2 ×  107 – 2.8 ×  108) a 0.28 ± 0.02 2.96 ×  1014 4 6.317

Cq1 3.9 ×  106 (8.1 ×  105 – 4.4 ×  107) b 0.4 ± 0.022 4.81 ×  1011 4 20.01

Adult Se9 6.3 ×  106 (2.8 ×  106 – 1.7 ×  107) a 0.24 ± 0.02 2.65 ×  1014 4 3.763

Sn10 8.2 ×  107 (3.1 ×  107 – 2.9 ×  108) c 0.25 ± 0.02 5.59 ×  1014 4 4.351

Cq1 1.9 ×  107 (4.5 ×  106 – 1.9 ×  108) b 0.7 ± 0.022 1.93 ×  1013 4 9.159
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values between − 20 and 20 showed additive effects on 
the adult stage of WFT (Table 7).

Discussion
Natural enemies in an agroecosystem play a significant 
role in keeping pests from reaching economic threshold 
level. Insect-pathogenic microorganisms as pesticides 
not only suppress pest populations but also ensure 
sustainable agriculture as they are host-specific, leave no 
toxic residues, have no phytotoxic effects, are harmless to 
humans and provide self-sustaining pest control.

Results of the screening test showed that thirty 
different indigenous entomopathogenic microorganisms 

isolated from different sources were pathogenic to both 
the second larval stage and adult of WFT. However, 
the results also showed that there were differences in 
virulence within genera, species and isolates. Apart from 
two bacterial isolates, the virulence did not exceed 30%. 
Since entomopathogenic bacteria need to be digested 
by the insects to be effective, their use in the control of 
sucking pests such as WFT is not common. However, 
there are studies that show they can be effective. Helyer 
and Brobyn (1992) tested the commercial product 
Bactospeine garden, containing B. thuringiensis, against 
WFT larvae and observed a mortality of 87%. Similarly, 
Bilbo et  al. (2020) indicated that two commercial 
bioinsecticides, Venerate (Burkholderia strain A396) 
and Grandevo (Chromobacterium subtsugae strain 
PRAA4-1), significantly reduced thrips populations in a 
commercial staked tomato field. In the present study, S. 
marcescens Se9 and B. safensis Cq1 isolates caused 54 and 
51.3% mortality on the second larval stage, respectively. 
These isolates also showed 69.6 and 62.5% mortality 
rates on adult of WFT. Pathogenicity of S. marcescens 
has been reported in various agricultural pests such 
as Helicoverpa armigera (Mohan et  al. 2011), Bemisia 
tabaci (Karut et al. 2020), Heliothis virescens (Sikorowski 
et al. 2001), Bombyx mori (Tao et al. 2022), Anoplophora 
glabripennis (Deng et al. 2008), Spodoptera exigua (Eski 
et al. 2018) and Rhynchophorus ferrugineus (Zhang et al. 
2011). However, this study is the first report on the 
pathogenicity of S. marcescens against WFT. Its virulence 
depends on its extracellular hydrolytic enzymes, 
including chitinases, proteases and nucleases as well as 
toxins with hemolytic and cytotoxic activities (Tao et al. 
2022). In these reports, virulence of S. marcescens isolates 
ranged between 50 and 100%, suggesting the existence 
of host species-specific interactions between these 
virulence factors and the insects’ innate immune system.

Similarly, the fungal isolates tested were found to be 
pathogenic for the WFT and differed in their virulence. 
Among the isolates, the virulence of M. flavoviride As18, 
L. muscarium Pa3 and B. bassiana Hp4 on second larval 
stage was 92.1, 85.1 and 86.1%, respectively, and the 
differences between their virulence were non-statistically 
significant (p > 0.05). There are many studies on the use 
of fungi in the control of WFT as they do not need to be 
eaten by insects to be effective and can initiate infection 
directly from the cuticle. These studies have also shown 
that the virulence of different species and even different 
strains of the same species may vary (Kim et  al. 2020). 
Sengonca et  al. (2006) investigated the virulence of two 
different strains of M. flavoviride to first instar larvae of 
WFT and reported that M. flavoviride strain 5744 was 
more pathogenic than M. flavoviride strain 1164. In the 
present study, M. flavoviride As18 caused 92% mortality, 

Table 4 Median lethal time  (LT50) of fungal isolates at a 
concentration of  107 conidia/ml for the second larval and adult 
stages of WFT

* For each isolate, the  LT50 value for larvae is given in the first row and for adults 
in the second row

SE Standard error, df degree of freedom, X2 Chi-square

Isolates LT50 (FL, %95) (days) Slope ± SE LT95 df X2

As2 7.00 (6.35 –8.05)* 0.5 ± 0.055 10.77 3 2.59

7.80 (6.87 –9.50) 0.4 ± 0.061 11.95 3 2.32

As18 3.37 (3.06 –3.59) 1.0 ± 0.043 5.17 3 7.27

4.00 (3.88 –4.14) 1.0 ± 0.040 6.27 3 1.25

KTU2 4.32 (4.19 –4.46) 1.0 ± 0.046 6.43 3 2.50

4.65 (4.50 –4.83) 1.0 ± 0.048 6.90 3 5.25

Gg12 4.66 (4.49 –4.85) 0.8 ± 0.043 7.16 3 3.06

4.96 (4.77 –5.18) 0.8 ± 0.049 7.39 3 2.76

B5 5.73 (5.06 –7.23) 0.6 ± 0.047 8.90 3 6.63

6.44 (5.95 –7.17) 0.5 ± 0.052 9.90 3 2.32

B23 4.40 (4.28 –4.54) 0.8 ± 0.050 6.39 3 0.83

4.74 (4.59 –4.92) 1.0 ± 0.051 6.93 3 0.77

KTU24 5.08 (4.87 –5.33) 0.8 ± 0.048 7.65 3 3.82

5.31 (5.09 –5.60) 0.8 ± 0.055 7.77 3 2.30

KTU57 5.31 (4.88 –6.10) 0.7 ± 0.058 7.67 3 5.59

5.72 (5.43 –6.13) 0.6 ± 0.066 8.20 3 3.39

Hp4 3.68 (3.57 –3.78) 1.2 ± 0.045 5.49 3 1.90

4.19 (4.07 –4.32) 1.0 ± 0.046 6.20 3 2.79

Pa4 4.16 (4.05 –4.29) 1.0 ± 0.046 6.17 3 1.76

4.28 (4.16 –4.42) 1.0 ± 0.047 6.33 3 1.34

Gg1 4.76 (4.62 –4.93) 1.0 ± 0.057 6.75 3 0.29

4.83 (4.69 –5.00) 0.9 ± 0.061 6.78 3 5.07

B8 4.84 (4.68 –5.03) 1.0 ± 0.052 7.05 3 0.75

5.11 (4.93 –5.33) 1.0 ± 0.063 7.18 3 1.18

Pa3 3.87 (3.62 –4.15) 1.1 ± 0.047 5.66 3 6.65

4.23 (4.12 –4.36) 1.0 ± 0.047 6.23 3 3.10

KTU42 5.58 (5.32 –5.93) 0.8 ± 0.064 7.97 3 0.72

5.82 (5.52 –6.27) 1.0 ± 0.083 8.03 3 1.25

KTU1 5.96 (5.62 –6.46) 0.8 ± 0.070 8.50 3 0.60

6.42 (5.94 –7.22) 0.7 ± 0.094 8.88 3 0.62
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while M. flavoviride As2 caused only 8% mortality on 
second instar larvae. The susceptibility of WFT to EPF 
varied with the developmental stages. Sengonca et  al. 
(2006) found that the  LC50 value of B. bassiana strain 
4591 was 3.55 ×  104 conidia/ml for first larval stage and 
1.32 ×  106 for adult stage. Similarly, the  LC50 value of 
M. flavoviride As18 was lower for second larval stage 
than for adult. It can be assumed that these differences 
in susceptibility at different stages of development are 
due to the thickness of the cuticle or metamorphosis. In 
addition, an increasing amount of antifungal substances 
on the cuticle may inhibit spore germination and 
penetration (Eski and Gezgin 2022). On the other hand, 
the pathogenicity of EPF depends on the ability of their 
enzymatic equipment, which consists of lipases, proteases 
and chitinases that degrade the insect’s integument 
(Mondal et al. 2016; Shin et al. 2020). However, a variety 
of factors such as water, ions, fatty acids and nutrients 
on the surface of the cuticle influence spore germination 

(Liu et al. 2023). In addition, the microorganisms in the 
gut could also play a crucial role in the development and 
ecology of the host’s defenses against fungal pathogens. 
Zhou et al. (2023) showed that internal microorganisms 
of F. occidentalis were involved in the infection process 
of Lecanicillium sp. and that disruption of the internal 
microbial balance leads to recognizable sublethal effects. 
Therefore, the differences in virulence could be explained 
by many factors that influence the infection process.

The use of two different biological control agents 
against the pest may increase virulence or accelerate 
the infection process as they act independently on 
different points of host susceptibility. Mantzoukas 
et  al. (2013) suggested that when fungi and bacteria 
are applied simultaneously, their interactions have 
synergistic effects on insect mortality as both agents 
act independently, but it depends on the particular 
combinations of pathogens and host species. In 
the present study, the combined infections with 

Fig. 2 Virulence of fungal isolates on the second larval and adult stages of WFT at a concentration of  107 cfu/ml. The bars show the means 
of mortality rates obtained from bioassays with four replicates, corrected according to the Abbott formula. The error bars show the standard 
deviation between the mean values, different lowercase and uppercase letters indicate statistical differences (ANOVA, Tukey’s HSD test, p < 0.05)

Table 5 Median lethal concentration  (LC50) of fungal isolates for the second larval and adult stages of WFT

SE Standard error, df degree of freedom, X2 Chi-square

Insect stage Isolates LC50 (FL, %95) (conidia/ml) Slope ± SE LC95 df X2

Larvae As18 1.6 ×  104 (6.0 ×  103–3.7 ×  104) a 0.6 ± 0.026 5.50 ×  107 4 8.903

Hp5 4.1 ×  104 (1.7 ×  104–8.6 ×  104) b 0.5 ± 0.024 2.40 ×  108 4 7.120

Pa3 4.6 ×  104 (1.0 ×  104–1.5 ×  105) b 0.5 ± 0.023 3.50 ×  108 4 18.29

Adults As18 7.1 ×  104 (2.7 ×  104–1.6 ×  105) a 0.5 ± 0.023 1.20 ×  109 4 7.779

Hp5 2.4 ×  105 (1.5 ×  105–3.9 ×  105) b 0.5 ± 0.022 1.12 ×  1010 4 4.871

Pa3 8.0 ×  105 (5.1 ×  105–1.2 ×  106) c 0.4 ± 0.022 2.74 ×  1010 4 5.607
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different concentrations of M. flavoviride As18 and S. 
marcescens Se9 generally led to additive and in one case 
to synergistic interactions. The synergistic or additive 
effect in the infection of insects with bacterial–fungal 
mixtures can probably be attributed to two main 
reasons. Firstly, the intestinal disturbances and general 
intoxication caused by bacteria interfere with insect 
feeding, delay their growth and prolong the inter-molt 
period. The delayed growth and molting may assist the 

infection may increase the susceptibility of the larvae to 
bacterial infections.

The combined use of fungi and predators (Zhang 
et al. 2021), nematodes and predators (Ebssa et al. 2006) 
and entomopathogens with conventional insecticides 
(Ge et  al. 2020) has been reported to significantly 
reduce WFT populations. However, the combined use 
of entomopathogenic microorganisms is limited. The 
combined treatment of S. carpocapsae Nemastar and 

Table 6 Interactions between S. marcescens Se9 (Sm-Se9) and M. flavoviride (Mf-As18) against second larval stage of WFT

Combination Concentration Observed 
mortality (%)

Expected 
mortality (%)

Co-toxicity factor Interaction type

Sm-Se9 (cfu/ml) Mf-As18 (conidia/ml)

1 LC25 LC25 47.63 43.32 9.94 Additive

2 10 ×  LC25 63.67 56.35 12.99 Additive

3 100 ×  LC25 95.79 69.96 36.92 Synergistic

4 10 ×  LC25 LC25 51.37 57.23 − 10.12 Additive

5 10 ×  LC25 71.42 70.26 1.65 Additive

6 100 ×  LC25 85.26 83.87 1.65 Additive

7 100 ×  LC25 LC25 47.76 69.31 − 31.09 Antagonistic

8 10 ×  LC25 64.70 82.34 − 21.42 Antagonistic

9 100 ×  LC25 75.89 95.95 − 20.90 Antagonistic

10 LC25 0 20.46 –

11 10 ×  LC25 0 34.37 –

12 100 ×  LC25 0 46.45 –

13 0 LC25 22.86 –

14 0 10 ×  LC25 35.89 –

15 0 100 ×  LC25 49.50 –

Table 7 Interactions between S. marcescens Se9 (Sm-Se9) and M. flavoviride (Mf-As18) against adult stage of WFT

Combination Concentration Observed 
mortality (%)

Expected 
mortality (%)

Co-toxicity factor Interaction type

Sm-Se9 (cfu/ml) Mf-As18 (conidia/ml)

1 LC25 LC25 43.89 36.78 19.33 Additive

2 10 ×  LC25 76.79 62.69 22.49 Synergistic

3 100 ×  LC25 96.26 72.71 32.38 Synergistic

4 10 ×  LC25 LC25 47.64 52.67 − 9.55 Additive

5 10 ×  LC25 73.66 78.58 − 6.26 Additive

6 100 ×  LC25 91.07 88.60 2.78 Additive

7 100 ×  LC25 LC25 48.21 62.29 − 22.6 Antagonistic

8 10 ×  LC25 70.78 88.20 − 19.75 Additive

9 100 ×  LC25 80.80 98.22 − 17.73 Additive

10 LC25 0 11.34 –

11 10 ×  LC25 0 27.23 –

12 100 ×  LC25 0 36.85 –

13 0 LC25 25.44 –

14 0 10 ×  LC25 51.35 –

15 0 100 ×  LC25 61.37 –
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M. anisopliae ICIPE-69 on soil stages of WFT resulted 
in lower emergence of adults and synergistic response 
compared to single treatment (Otieno et  al. 2016). To 
our knowledge, this is the first study to show that the 
combined use of local M. flavoviride and S. marcescens 
isolates can control WFT through a synergistic effect. 
On the other hand, synergistic effects between EPF 
and bacteria have also been observed in other insect 
pests. For example, Beris and Korkas (2021) reported 
that a combination treatment of B. bassiana and B. 
thuringiensis caused significantly higher mortality on the 
larvae of the European grapevine moth, Lobesia botrana 
(Lepidoptera: Tortricidae), than a single treatment 
when applied at the same time. In contrast, Ma et  al. 
(2008) reported that an additive effect on mortality 
was observed when the Asiatic corn borer, Ostrinia 
furnacalis (Lepidoptera: Crambidae) was exposed to 
a combination of B. bassiana  (107 conidia/ml) and B. 
thuringiensis toxin Cry1Ac (0.2  µg/ml). However, in the 
same study, combinations of sublethal concentrations of 
Cry1Ac and B. bassiana resulted in antagonism. In the 
present study, although additive and synergistic effects 
were generally observed with the combination of M. 
flavoviride and S. marcescens, antagonistic effects were 
observed in combinations using 100 times the  LC25 value 
of S. marcescens. Competing factors between the control 
agents can also lead to antagonistic effects. The pigment 
prodigiosin, which is produced by some Serratia species, 
has been reported to have an antifungal effect (Jimtha 
et  al. 2017). This could explain the antagonistic effect 
that occurs in combinations using high concentrations of 
S. marcescens Se9. Similarly, Deng et al. (2022) reported 
that the Japanese pine sawyer, Monochamus alternatus 
associated Serratia species showed a strong inhibitory 
effect against B. bassiana by reducing the germination 
and growth of the fungal conidia. This clearly shows the 
importance of the concentrations of the agents used in 
the combinations.

Conclusion
This is the first study to show that the combined use of 
the M. flavoviride and S. marcescens has a synergistic 
effect on the second larval stage and adult of WFT. The 
combination of fungi and bacteria may be promising 
for the development of combination preparations that 
cause a high mortality rate of WFT. In further studies, 
M. flavoviride As18 and S. marcescens Se9 should be 
formulated as a biopesticide to overcome the adverse 
effects of the environment such as UV radiation and 
temperature, and efficacy of biopesticide should be tested 
under greenhouse or field conditions to validate the 
results.
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