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Antagonistic fungal volatiles as potential 
biocontrol countermeasure for microbial 
postharvest fruit diseases
Toga Pangihotan Napitupulu1*   

Abstract 

Background Fruits are the main important agricultural commodity, but very susceptible in terms of postharvest 
losses (PHL) due to diseases by microbial pathogens. Recently, there has been increased interest in countermeasure 
efforts to reduce PHL. As an alternative to chemical pesticides, fungal volatile organic compounds (FVOCs) are poten-
tial countermeasures because they are considered more environmentally friendly with less toxicity to human health.

Main body

FVOCs include wide diverse of organic chemical functional groups, but with low molecular weight (< C20) which 
possesses sufficient chemical, physical, and biological properties that can be clearly perceived by other organisms 
through intra- or inter-kingdom interactions, either mutualistic or antagonistic. Based on the antagonistic function, 
some beneficial FVOCs can be utilized as a biological control agent and biofumigant to combat microbial pathogens 
in postharvest fruit. Proposed mechanisms of the antagonistic effect of FVOCs toward their cell counterpart include 
alteration of the morphology of cell wall and cell membrane, influencing intracellular redox balance, elevating reac-
tive oxygen species (ROS) level, and also possibly damaging DNA target. All these conditions potentially disrupt cell 
contents and then lead to cell death. In order to achieve this purpose, the suitable formulation of FVOC-loaded biofu-
migant is very crucial.

Conclusion FVOCs have potential application as biofumigant to control microbial pathogens in postharvest fruits. 
However, for the development of a product, the formulation of FVOC-loaded biofumigant should consider the com-
patibility of the formula with fruits, toxicity effect to humans, and cost production to ensure the effectiveness 
of the formula.
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Background
The increasing growth of the world population affects 
the demand for food availability. It is estimated that the 
world population will reach a peak at 9.7 billion in 2064 

(Vollset et  al. 2020); thus, increasing agricultural pro-
duction is inevitable in order to fulfill the world food 
demand. Under this projection, the protection of crops 
from both abiotic and biotic stresses during cultivation is 
necessary for supporting crop yield demand. Moreover, 
the management of postharvest agriculture is comple-
mentary to preharvest to prevent irreducible yield losses 
in terms of the quality and shelf life of harvested products 
(Arah et al. 2015). For centuries, synthetic pesticides have 
been successfully utilized to overcome biotic stresses 
and intensify agricultural yields in order to increase 
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food production and maintain postharvest quality and 
quantity. Regarding the availability and effectiveness of 
synthetic pesticides, their constant applications face vari-
ous limitations that are considerably a threat to sustain-
able agricultural practices. Cases of microbial resistance 
have been reported for long-term during continuous use 
of synthetic pesticides (Xing et al. 2020). Moreover, syn-
thetic pesticides such as xenobiotics have potential harm 
to human health through direct exposure (Kim et  al. 
2017) or via food chains (Zia et al. 2009).

Meanwhile, climate change deteriorated the produc-
tion of crops by increasing pathogen resistance and 
weakening ecosystem susceptibility and vulnerability 
(Santini and Ghelardini 2015). As an example, continuous 
exposure to drought and high temperature contributed 
to decreasing plant productivity as a response to physi-
ological, biochemical, and physical damages (Fahad et al. 
2017), expanding the spreading and resistance of plant 
pathogens (Prasch and Sonnewald 2013) and increasing 
soil degradation thus directly affected loss of fertility (Lal 
2012). Not only during cultivation but climate change 
also contributed to increasing incidents of postharvest 
losses (PHL) mainly by altering the quality of products 
due to elevated temperature during storage (Moretti et al. 
2010) and escalating activity of postharvest pathogens 
(Dixon 2012). Recently, there has been increased interest 
in countermeasure efforts to provide sustainable agricul-
tural practices in order to improve crop yield and reduce 
PHL (Díaz et al. 2020).

Among various agricultural products, fruits are the 
main important agricultural commodities, but very sus-
ceptible in terms of PHL (Conrad et  al. 2018). Depend-
ing on the region, the losses of fruits are in the range of 
5 to 20% of total production volume in developed coun-
tries, and between 20 and 50% in developing countries 
(Dwiastuti et  al. 2021). Regarding the climatic condi-
tion, tropical fruits have a relatively higher susceptibility 
to loss than subtropical or temperate fruits, due to their 
inherent biological trait (Bantayehu et al. 2017). Related 
to the handling and supply chain processes, massive loss 
is obtained during handling, storage, packing, and trans-
portation, compared to the farmer level (Olayemi et  al. 
2012), due to physiological, mechanical, as well as micro-
bial causes. The fruit decay caused by microbial obstruc-
tion is a consequence of phytopathogen proliferation, 
mostly bacteria and fungi, on the edible part of the fruits. 
For example, Fusarium spp. along with Colletotrichum 
musae were major causative fungal agents that were 
responsible for crown rot postharvest disease in bananas 
(Lassois et al. 2010). The source of inoculum can be from 
flower or dried leaves and transferred to the banana 
bunches during harvest or postharvest cleaning with 
contaminated water (Kamel et al. 2016). During storage, 

the fungal pathogens caused early ripening on the con-
taminated banana bunches, thus undesirably shorting 
their shelf life (Kuyu and Tola 2018). Further implica-
tion leads to softening and blackening of the fruit tissue 
(Lassois et al. 2010).

In common practices, fruits along with other agricul-
tural products are protected from postharvest decay 
using chemical substances. Postharvest fruit control 
strategies carried out by chemical control must meet 
aspects that include biological safety (humans and the 
environment), effectively increase shelf time, limited 
sensory interaction with fruit, and no less important are 
economic aspects (cost and process). Currently, effective 
control is using synthetic chemical pesticides, but these 
methods can create resistance to fungal pathogens if used 
continuously alone (Hawkins et  al. 2019). In addition, 
chemical pesticides have a high potential for toxicity to 
humans and the environment with their persistent and 
accumulative nature (Pathak et  al. 2022). As an alterna-
tive, chemical pesticide agents derived from vegetable 
sources have been developed, such as Nicolaia speciosa 
flower extract (Pratomo et  al. 2009), betel leaf extract 
(Madhumita et al. 2019), and cinnamon oil (Wang et al. 
2023). However, this biocontrol method is still need-
ing great improvement due to the limited use of crude 
extracts, changes in fruit sensory (aroma), unstable con-
trol results obtained, and formulas that have not been 
standardized.

In the past few decades, the development and uti-
lization of volatile organic compounds (VOCs) from 
microbes has increased and attracted many studies in 
order to further investigate their diversity as well as 
biotechnological applications (Bui and Desaeger 2021). 
VOCs are a mixture of highly volatile carbon-based com-
pounds as primary or secondary metabolites that are 
emitted as signals for intra- or inter-organism commu-
nication, both mutualistic and non-mutualistic. VOCs 
from several fungi and bacteria have been used as a bio-
logical control agent (“biofumigant”) for plant diseases 
and pest management because they are considered more 
environmentally friendly and reduce the use of synthetic 
pesticide applications (Boukaew et al. 2019).

Main Body
Chemistry and analysis of fungal volatiles
Fungal volatile organic compounds (FVOCs) are carbon 
compounds emitted by fungi that have been vaporized 
to a gas phase with a low boiling point at a temperature 
of around 20  °C, high vapor pressure at the pressure of 
0.01 kPa, and typically odorous (Pagans et al. 2006). Most 
FVOCs are lipophilic, thus having low solubility in water 
and other polar solvents. FVOCs include wide-diverse 
of organic chemical functional groups (< C20), but with 
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low molecular weight, generally in the range of 50–200 
Daltons (Rowan 2011) which possess sufficient chemi-
cal, physical, and biological properties that can be clearly 
perceived by other organisms through intra- or inter-
kingdom interactions.

FVOCs are belonged to various chemical classes 
(Table  1), from simple hydrocarbons to different func-
tional group moieties including alcohols, aldehydes, 
ketones, phenols, thioalcohols, and thioesters. More than 
300 distinct FVOCs have been identified and character-
ized (Hung et  al. 2015), but most attention of research 
interest was focused on the terpenoid-related volatile 
compounds, particularly sesquiterpenoids (Kramer and 
Abraham 2012).

For the current time, gas chromatography mass spec-
trometry (GC–MS) is still the prominent method for 
FVOC detection because it is powerful capabilities of 
sensitive detection as well as high separation ability 
(Epping and Koch 2023). Identification of the compounds 
are done by using mass spectra database, a library, or 
by retention times and spectra comparison with known 
standards. In order to collect the FVOCs proceed the 
detection, headspace solid-phase microextraction (HS-
SPME) provides one of the best techniques for prepara-
tion of samples, particularly for the profiling of volatiles 
derived from living fungal cultures (Lancioni et al. 2022). 
However, some alternative methods have been devel-
oped as well. Activated charcoal filters were able to 
adsorb various class of volatile compounds, but some of 
the compounds such as unsaturated hydrocarbons, phe-
nols, aldehydes, and amines were tight stronger to the 
filters, made them difficult to recover for further analy-
sis (Matysik et al. 2009). A more classic method involved 
simultaneous distillation extraction (SDE) that merges 
extraction of solvent and vapor distillation, as examined 
toward FVOCs of Penicillium roqueforti (Jeleń 2003).

Production and biosynthesis of FVOCs
Single fungal species produce and emit a cocktail of 
FVOCs (volatolome) to the surrounding atmospheric 
environment. However, the composition and concen-
tration of the FVOC produced are highly influenced by 
various environmental factors, particularly available 
nutrients and oxygen, pH, and temperature. The amount 
and diversity of available macronutrients, specifically car-
bon and nitrogen, affect the fungal metabolism to pro-
duce certain FVOCs. For example, the shifting chemical 
composition of FVOCs produced by F. verticillioides was 
observed when the fungus was incubated in different sim-
ple sugars (Achimón et  al. 2022). Similarly, variation of 
nitrogen supply ((NH4)2SO4 or  KNO3) changed consider-
ably the amount and type of FVOCs produced by Tricho-
derma spp. (Wheatley et al. 1997). Oxygen availability is 

a basic parameter that affects fungal respiration and thus 
significantly shapes FVOC production (McNeal and Her-
bert 2009). Under aerobic fermentation, almost entirely 
carbon source was prioritized for energy production and 
cell growth, which entirely produced  CO2, leaving a small 
amount for the production of secondary metabolites 
including FVOCs. The level of acidity influences nutrient 
availability for fungi and their physiological condition, 
which can affect the production of FVOC (Stotzky et al. 
1976). Similarly, the environmental temperature might 
be altered by FVOC production by modifying the fungal 
perception of environmental conditions (Almaliki et  al. 
2021). In the soil microenvironments, soil texture, soil 
moisture, as well as surrounding microbial activity play 
important roles to incite the production of FVOCs, thus 
determining their response to dynamic soil perturbations 
(McNeal and Herbert 2009).

FVOCs are synthesized in a very small quantity, mak-
ing them strenuous to study and characterize. The infor-
mation related to the biosynthesis pathway of FVOCs 
is relatively scarce compared to plant VOCs (Dudareva 
et  al. 2013), although the efforts to integrate genomic, 
transcriptomic, and metabolomic approaches are at the 
start to tie in FVOC production with corresponding 
gene expression (Gianoulis et  al. 2012). Obviously, by 
implementing gene modification on fungi with disrupted 
FVOC production, the biosynthesis mechanism in vari-
ous fermentation and environmental conditions are pos-
sible to determine. Therefore, the connection between 
a certain gene to the production of volatile compounds 
and their biosynthesis pathways can be characterized. 
As a comparison, plants produce a complex mixture of 
FVOCs via four major metabolic pathways, namely in the 
lipoxygenase (LOX) to produce jasmonates and hydro-
carbons, the mevalonic acid (MVA) to produce sesquiter-
penes, the methylerythritol phosphate (MEP) to produce 
terpenes and ketones, and the shikimate pathway to pro-
duce benzenoids and phenylpropanoids (Razo-Belman 
and Ozuna 2023).

FVOCs in fungal interaction
FVOCs play important roles on mediated the intra- and 
inter-kingdom interaction of both below- and above-
ground. Initially, the gasses emitted by fungi or other 
microbes have been considered as by-products of pri-
mary or secondary metabolism. However, recent findings 
showed that these volatile compounds possessed some 
significant biological activities (Karsli and Şahin 2021). 
The most important aspect of the biological function 
of FVOCs is related to their function in the interaction 
mechanism. Several recent investigations demonstrated 
that the production and emission of FVOCs can be sup-
pressed or induced fungal physiology and morphology 



Page 4 of 14Napitupulu  Egyptian Journal of Biological Pest Control          (2023) 33:100 

Table 1 Chemical classes of some major fungal volatile organic compounds (FVOCs)

FVOC name Chemical structure Fungal source

Chemical group: hydrocarbons

γ-terpinene Diaporthe apiculatum (Song et al. 2019)

α-terpinene Fusarium culmorum (Schmidt et al. 2016)

Alcohols

Ethanol Aureobasidium pullulans (Yalage Don et al. 2020)

1-pentanol Candida nivariensis (Jaibangyang et al. 2020)

2-phenylethanol Monascus purpureus (Zhang et al. 2021)
C. intermedia (Tilocca et al. 2019)
Trichoderma asperellum (Intana et al. 2021)

3-methyl-1-butanol Saccharomyces cerevisiae (Dalilla et al. 2015)

Isobutanol Trichoderma viride (Hung et al. 2013)
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through intra- as well as inter-kingdom interactions (Fre-
itas et al. 2022).

FVOCs have been considered as long-distance modes 
of cellular communications, while soluble metabolites 

including enzymes are associated with short-distance 
communications accompanying physical interaction. 
From the ecological perspective, FVOC function as envi-
ronmental signaling compounds (semiochemicals) to 

Table 1 (continued)

FVOC name Chemical structure Fungal source

1-octen-3-ol Tricholoma matsutake (Ohta 1983)

Chemical group: aldehydes

2-methyl-butanal Cladosporium halotolerans (Jiang et al. 2021)

Trans-cinnamaldehyde Hanseniaspora uvarum (Guo et al. 2019)

Chemical group: ketones

6-pentyl-2H-pyran-2-one Trichoderma atroviride (Garnica‐Vergara et al. 2015)

Chemical group: organic acid

Acetic acid Saccharomyces cerevisiae (Giannattasio et al. 2013)
Trichoderma asperelloides (Phoka et al. 2020)

3-methyl butanoic acid Kwoniella heveanensis (Jaibangyang et al. 2021)
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deliver chemical signals or environmental cues to medi-
ate, either beneficial or antagonistic, interactions (Cale 
et  al. 2016). In the soil microenvironment, FVOCs are 
able to diffuse through the soil matrix to reach other 
organisms, including bacteria, other fungi, plant roots, 
or worms (Werner et al. 2016). In the aboveground envi-
ronment, fungi are able to emit FVOCs that are able to 
influence insects (Lozano-Soria et  al. 2020). Moreover, 
FVOCs were used by mass-aggregating ambrosia beetle 
Xylosandrus germanus as the signal compounds for fun-
gal selection (Gugliuzzo et al. 2023).

In the bacterial-fungal interaction, fungi play impor-
tant roles in long-distance communication that can lead 
to various phenotypical changes. Some bacterial growth 
can be suppressed after being exposed to FVOCs. For 
example, FVOCs emitted by Pleurotus ostreatus inhib-
ited the growth of Bacillus spp. (Pauliuc and Botau 2013). 
On the other hand, FVOCs are able to affect bacterial 
secondary metabolite production and change the physio-
logical behavior of bacterial cells. F. culmorum produced 
FVOCs that stimulate the production of sodorifen, a ter-
pene, in Serratia plymuthica and influence various physi-
ological of the bacterium including signal transduction, 
motility, cell envelope biogenesis, and energy metabolism 
(Schmidt et al. 2017).

In intra-kingdom communication, FVOCs play impor-
tant roles in stimulating or suppressing other fun-
gal counterparts. A common and well-known FVOC, 
1-octen-3-ol, modulated the secondary metabolism and 
growth between Aspergillus flavus and A. oryzae dur-
ing interspecies interaction (Singh et  al. 2020). Mean-
while, various Trichoderma species have been reported 
to inhibit the mycelial growth of phytopathogenic fungi 
through the emission of FVOCs (Ruangwong et al. 2021). 
Besides their function as semiochemicals, a recent study 
showed that FVOCs can be utilized as carbon sources in 
interspecific interactions of fungal symbionts of moun-
tain pine beetle (Cale et al. 2016).

FVOCs have biological activity as plant growth pro-
motion metabolites. Besides their ability to promote 
plant growth via the production of soluble secondary 
metabolites, fungi are also able to produce gasses that act 

as chemical signaling to intrigue plant physiology. Two 
FVOCs produced by C. halotolerans, 2-methyl-butanal 
and 3-methyl-butanal, significantly modulated plant 
growth and modified the development of the root sys-
tem (Jiang et al. 2021). Trichoderma species, besides their 
well-known ability to promote plant growth via the pro-
duction of soluble metabolites, have been known to emit 
volatile metabolites with act as signaling compounds to 
affect some plant physiology processes (Lee et al. 2016). 
Furthermore, FVOCs produced by endophytic fungi have 
a remarkable potential as biofumigant. Diaporthe sp., an 
endophytic fungus isolated from leaves of Chloranthus 
elatior Sw. have been reported to emitted FVOCs that 
possess antifungal activity against some postharvest fun-
gal pathogens (Santra and Banerjee 2023).

Bioprospecting of FVOCs
Underestimated previously, the study of FVOCs started 
to flourish in the last decades due to the recent findings of 
their biological activities, particularly in the agricultural, 
food, and energy field (Fig. 1). FVOCs were formerly rec-
ognized as side metabolic products with very few physi-
ological functions. However, the recent breakthroughs in 
microbial interaction studies found that the FVOCs play 
important roles in intra- or inter-kingdom interactions, 
and act as small signaling molecules that regulate many 
important biological processes. These findings lead to 
emerge the bioprospecting of the FVOCs regarding their 
interactions, either antagonistic or mutualistic.

The chemical composition of FVOCs of some fila-
mentous fungi showed an abundance of alkanes, 
cyclohexenes, cyclopentane, terpenes, benzenes, and 
polyaromatic hydrocarbons. Many of these compounds 
are found similar to a group of molecules in diesel or 
fuel-related hydrocarbons (Strobel 2014). An endo-
phytic fungus, Nodulisporium sp. produced biofuel 
volatile compounds when grown in agricultural waste 
substrates under microaerophilic conditions (Schoen 
et al. 2017). Another report showed that several oleagi-
nous endophytic fungi associated with biodiesel plants 
such as Jatropha curcas and Ricinus communis have 
great potential to be explored as biofuel sources (Paul 

Table 1 (continued)

FVOC name Chemical structure Fungal source

Chemical group: esters

2-phenyl ethyl acetate Pichia spp. (Masoud et al. 2005)
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et al. 2020). This source of carbon is very potential as a 
green renewable energy source as an alternative to fos-
sil fuels. Moreover, these filamentous fungi utilized cel-
lulolytic polymer and its derivative that are abundantly 
found in plant-based waste as substrate, making it a 
novel and very promising candidate as renewable bio-
fuels in the future.

In agricultural practices, the FVOCs have been imple-
mented for biological control of plant pathogens, rang-
ing from microbes to nematodes, even insects and their 
ability as plant growth-promoting agents has potency to 
be developed further. Various previous studies showed 
the activity of FVOCs as inhibitors of bacterial growth 
(Schmidt et  al. 2016). Furthermore, FVOCs were also 
found as an antagonistic agent in intra-kingdom com-
munications, thus proliferating their roles to control the 
growth of the fungal counterpart particularly the phy-
topathogenic (Ruangwong et  al. 2021). Recent findings 
also showed that FVOCs have the ability to inhibit the 

growth of nematodes causing deteriorating plant roots 
and growth (Veronico et al. 2023).

The antagonistic effects of certain FVOCs bring a use-
ful application of these compounds on the industrial 
scale, emphasizing on the application of biocontrol activ-
ity of several plant pathogens causing the postharvest dis-
ease. The loss caused by the diseases toward postharvest 
fruits and vegetables is remarkable annually with a ten-
dency to increase every year. This effect brings devasta-
tion from an economic perspective globally. The effort to 
bio controlling the effect of the disease is not only benefi-
cial in the economic aspect but also in the improvement 
of human health and quality of life. It has been reported 
that several bacterial as well as fungal phytopathogens 
causing postharvest disease in fruits and vegetables pro-
duced mycotoxins that are harmful to human health in 
short or long time exposure (Abdallah et  al. 2022). In a 
confrontation with these microbial phytopathogens, sev-
eral fungi emitted FVOCs that significantly decreased the 

Fig. 1 Fungal volatile organic compounds (FVOCs) have roles as an indirect mode of intra- and inter-kingdom communication, either mutualistic 
or antagonistic (Freitas et al. 2022). Based on this biological function, FVOCs can be utilized for various purposes, particularly in the food industry 
and agriculture (Veronico et al. 2023). Recently, FVOCs have prospects as a novel renewable energy sources (Strobel 2014)
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growth as well as disturbed the physiological functions 
of the counterpart microbes, thus lowering the fruit and 
vegetable rot incidences. The identification and charac-
terization of FVOCs of various fungal strains through 
volatolomics analysis often showed the abundance of 
common and less toxic antifungal compounds. Therefore, 
these notions supported FVOC as a good candidate for 
biofumigant application in the food industry. For exam-
ple, Candida spp. was reported to produce isoamyl alco-
hol, a common C5 alcohol that is commonly found as a 
side product in food and beverage fermentation (Ando 
et al. 2012). This compound possessed a remarkable and 
promising antimicrobial property. Another example is 
octan-3-one, an important bio flavor from edible mush-
rooms, which was reported to have antifungal activity 
against cabbage spot disease caused by Alternaria bras-
sicicola (Muto et al. 2023). Moreover, an epiphytic yeast 
Metschnikowia sp. emitted FVOCs that were able to 
reduce production of aflatoxin  B1, a mycotoxin produced 
by A. flavus (Dikmetas et al 2023).

Antagonistic mechanism of FVOCs
The mechanisms of antimicrobial property of FVOCs 
toward fruit and vegetable postharvest disease are cur-
rently still limited, and the study to reveal the exact mode 
of action is still in progress. However, some mechanisms 
underlying the antagonistic effect of FVOCs emitted by 
fungi toward their cells counterpart are proposed (Fig. 2).

FVOCs targeting cell wall and organelle membrane
Cell walls and membranes maintained microbial cell 
shape through increasing mechanical resistance. The 
integrity of microbial cell membranes that are composed 
of phospholipids, sugars, and proteins is essential to the 
survival of microbes. Moreover, the cell wall composi-
tions of major molecules (chitin, β-glucan, peptidogly-
can) are vital to sustain cell morphology and protect the 
microbes from mechanical damage. However, FVOCs are 
able to damage membranes and cell walls, changing the 
morphology of microbes.

FVOCs are able to change the permeability of cells 
by peroxidation of the lipid layer. FVOCs released by a 
yeast-like fungus, A. pullulans, showed antifungal activ-
ity against Botrytis cinerea and A. alternata by enhanc-
ing peroxidation of lipids, production of reactive oxygen 
species (ROS), and loss of electrolytes (Don et al. 2021). 
Moreover, 3-methyl-1-butanol and 2-methyl-1-butanol, 
two FVOCS produced by S. cerevisiae, increased mem-
brane lipid peroxidation level in C. gloeosporioides and 
C. acutatum, the fungal phytopathogens that responsible 
for anthracnose in postharvest guava (Psidium guajava) 
(Dalilla et al. 2015). The increasing level of ROS produc-
tion changes the composition of the lipid layer and stim-
ulates peroxidation of lipids by polarized unsaturated 
lipids, thus changing the membrane permeability, result-
ing disintegration of the membrane, stimulation of free 
radical reaction, and cell apoptosis (Vázquez et al. 2019).

Fig. 2 Proposed mechanisms of antagonistic effect of fungal volatile organic compounds (FVOCs) toward cell target. FVOCs alter the morphology 
of cell walls and cell membranes (Yang et al. 2021), resulting damaging of cells and the leaking of cell contents (Vázquez et al. 2019; Gao et al. 2022). 
FVOCs also influence intracellular redox balance and elevate ROS levels, thus proceeding with peroxidation of the lipid membrane, disrupting 
mitochondrial function, and decreasing ATP production (Tilocca et al. 2019). Furthermore, the FVOCs are also possibly damaging DNA targets 
(Hutchings et al. 2017)
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Volatile compounds were also able to directly target 
microbial cell membranes by increasing their perme-
ability, hence leading to cellular leakage. Low molecular 
fatty acids, for example, are able to elevate the fluidity of 
the cell membrane, resulting in alteration of its conform-
ity, and leading to leakage of protoplasm. Capric acid, a 
decanoic saturated fatty acid, is able to disrupt the cell 
membrane of C. albicans, leading to intracellular content 
leakage, subsequently effective to kill this fungal patho-
gen (Bergsson et al. 2001).

Exposure of microbial toward FVOCs can cause mor-
phological changes in cell walls or cell membranes. For 
example, 3,4-dimethoxy styrol, a major FVOC produced 
by an endophytic fungus Sarocladium brachiate, altered 
the morphological structure of the F. oxysporum f.sp. 
cubense cell wall by disrupting the expression of chitin 
synthetase (Yang et al. 2021). Moreover, the microscopi-
cal observation of postharvest pathogen fungi after con-
tact with FVOCs emitted by Ceratocystis fimbriata, an 
ascomycete, showed some severe damages, including 
deformation of mycelia and conidia, curling appearance, 
and cell collapse (Gao et al. 2022).

FVOCs causing oxidative stress on microbial target
During the interaction, volatile compounds produced by 
fungi are able to induce the accumulation of ROS and 
oxidative stress on microbial cells’ counterparts. Conse-
quently, the ROS accumulation will lead to some physi-
ological disturbances, including disturbing redox balance 
and undesired reactions with important macromolecules 
such as proteins and lipids. These disturbances will even-
tuate dysfunction in cell homeostasis that further leads to 
cell death.

ROS are mostly formed in the course of aerobic respi-
ration in the mitochondrial respiratory chain, catalyzed 
by complex I enzyme (Don et al. 2021). During ethanolic 
fermentation by S. cerevisiae, decanoic acid is a byprod-
uct and is considered an inhibitor through its ability to 
accumulate in the endocellular and contribute to yeast 
toxicity mainly through lowering intracellular pH and 
cellular ATP exhaustion (Borrull et  al. 2015). Moreover, 
Fialho et  al. (2014) showed that FVOCs produced by S. 
cerevisiae disrupted the cellular redox state in Guignar-
dia citricarpa, a phytopathogenic fungus that causes 
citrus black spot, by elevating activities of superoxide dis-
mutase and catalase, resulting cellular stress oxidative.

FVOCs affect cellular metabolism and DNA on microbial 
target
Fungi through their FVOCs might influence the regula-
tion of some metabolites of other microbes. This altera-
tion can affect their physiological homeostasis which 
leads to inhibition of growth or even cell death. The 

exposure of 2-phenyl ethanol, a yeast-derived volatile 
organic compound, targeted some metabolic pathways 
in A. carbonarius such as decreasing proliferative abil-
ity, metabolism activity in mitochondria, biosynthesis of 
some proteins, and especially toxic substance detoxifi-
cation (Tilocca et al. 2019). Similarly, a study conducted 
by Farbo et al. (2018) showed that 2-phenyl ethanol sup-
pressed the production of ochratoxin A, the harmful 
mycotoxin for animal and human health, that is produced 
by A. carbonarius and A. ochraceus, along with the inhi-
bition of the mycelial growth of these filamentous fungal 
pathogens. In another example, FVOCs produced by F. 
culmorum altered the expression of genes and proteins 
of S. plymuthica that related to the energy metabolism, 
cell signaling, biogenesis of cell envelope, motility, and 
production of secondary metabolites (Schmidt et  al. 
2017). More specifically, the exposure to the fungus vola-
tiles triggered the bacterium to biosynthesize sodorifen, 
an uncommon terpene, as a response mechanism to the 
inter-kingdom interaction.

Another possible antagonistic mechanism is the effect 
of FVOCs on the DNA damage of the microbial coun-
terpart. Muscodor albus produced N-methyl-N-nitros-
oisobutyramide, a potent volatile mycotoxin, that affect 
primarily as a non-specific DNA methylating agent 
for various organisms (Hutchings et  al. 2017). Moreo-
ver, a study showed that several pure FVOCs, including 
1-octen-3-ol the common mushroom volatile, caused 
DNA damage under cytotoxic conditions without muta-
genic and clastogenic effect (Kreja and Seidel 2002).

Prospects and strategies of FVOC application as biocontrol 
for management of postharvest fruit
Much information and publications have been reported 
regarding the antifungal potency of FVOCs of yeasts as 
well as filamentous fungi to control postharvest crop 
diseases, thus limiting the mycotoxin level in the food 
(Xing et al. 2023). Plentiful examples of these fungal spe-
cies are demonstrated under in  vitro as well as in  vivo 
approaches to examine the antagonistic ability in control-
ling toxigenic and virulence activities of phytopathogens 
(Moore 2022). Furthermore, some studies were extended 
to examine the affectivity and efficacy of these FVOCs 
in planta or in fructo (Bandyopadhyay et al. 2019). Con-
sequently, these studies pave the way to integrated pest 
management (IPM) perspective in order to gain aware-
ness for green and environmentally friendly agricultural 
practices.

FVOCs are easily dispersed in food commodities, thus 
providing maximum protection by reaching even small 
and empty spaces, particularly during distribution and 
storage (Passone and Etcheverry 2014). Moreover, in a 
small and closed container, FVOC as a biofumigant gave 
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satisfaction protection and extended shelf life of posthar-
vest produce, even by applying a small dose of the bio-
fumigant (Herrera et al. 2015). These desirable outcomes 
of product application with a small dose of natural fungal 
volatile molecules are very beneficial in economic, envi-
ronmental, and health perspectives in comparison with 
their synthetic volatile molecule counterpart.

FVOCs with their small molecular weight are advan-
tage-able to be used as a biocontrol agent. Besides the 
antagonistic ability of FVOCs toward pathogens of post-
harvest produces, the compound toxicity level toward 
human and environmental health is also important to 
be considered. A collection of previous reports showed 
that some FVOCs may act as mycotoxins to mammals 
(Josselin et  al. 2021), thus limiting their wide range of 
application as a biocontrol agent for foods. The pres-
ence of FVOCs in foods can also be utilized as bioindi-
cators of spoilage and the production of mycotoxins by 
fungi (Schnürer et  al. 1999). Moreover, some common 
and well-known FVOCs that have antimicrobial activity 
such as 1-octen-3-ol, 2-methyl-1-propanol, isoamyl alco-
hol, ethyl acetate, and geosmin can be used to indicate 
the formation of mycotoxin produced by Penicillium, 
Aspergillus, and Fusarium. However, the study and infor-
mation about toxicity and level of safety of these FVOCs 
in postharvest biocontrol products are still lacking. For 
example, 1-octen-3-ol, an FVOC that responsible for 
common distinctive mold odor, is effectively reduced 
disease incidence in postharvest peaches caused by 
Monilinia fructicola at a concentration of 55.80 μg  mL−1 
(Wang et al. 2022). However, an experimental study of a 
group of human subjects after exposure to 10mg/m3 of 
this FVOC for 2 h showed a sign of acute effects such as 
light mucosal and eye irritation, followed by symptoms of 
nausea and headache (Wålinder et al. 2008).

Along with their antimicrobial ability to combat fruit 
decay caused by microbial pathogens, volatile com-
pounds are also able to influence the physiological and 
biochemical ripening processes of postharvest fruit, 
thus extending their shelf life (Fig. 3). FVOCs produced 
by H. uvarum, an endophytic yeast of strawberry fruit, 
were able to suppress the growth of a fungal postharvest 
pathogen, B. cinerea, thus preventing microbial decay of 
strawberries (Cai et  al. 2015). Furthermore, the FVOCs 
of this yeast were also able to improve fruit flavor and 
increase the strawberry defense capability during cold 
stress, possibly by interfering enzymatic activities of 
related key enzymes in postharvest strawberries (Wang 
et  al. 2019). The application of volatile compounds also 
affected volatilomics profile of the postharvest fruit. The 
application of hexanal vapor affected the volatile compo-
sition of Rubygem strawberry during a storage period, 
in which the increasing alcohol concentration at the end 

of the shelf life (Öz and Kafkas 2022). Regarding ripen-
ing processes, ethylene, a gaseous plant hormone, plays 
an important role in this process along with other hor-
mones (Iqbal et al. 2017). Therefore, this compound and 
its biosynthesis are potential targets in order to innovate 
a promising technology for expanding the shelf life of 
postharvest fruit. On the other hand, some cyclopro-
panes have been evaluated to have anti-ethylene proper-
ties, thus extending fruit ripening time (Grichko 2006). 
Furthermore, some previous reports showed that FVOCs 
of some fungi consist of cyclopropanes as one of the 
major compounds (Yang et al. 2021). Therefore, it is pos-
sible that emitted compounds by these fungi play roles as 
ethylene antagonists and can be utilized to lengthen the 
expiry time of fruits.

In a product development, good formulation of FVOC-
loaded biofumigant is crucial to ensure the efficacy and 
effectiveness of the active compounds. Moreover, it 
is necessary to develop a product in a formulation that 
can be used with minimum toxic effects on humans or 

Fig. 3 The aim of bioprospecting of fungal volatile organic 
compounds (FVOCs) is not only to inhibit microbial pathogens 
of postharvest decay (Xing et al. 2023) but also to delay ripening 
processes, hence extending storage time (Wang et al. 2019). In order 
to achieve these purposes, the suitable formulation of FVOC-loaded 
biofumigant is very crucial to make sure the FVOC as the active 
compound acts effectively and efficiently
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other organisms, to avoid its harmful effects. Some fac-
tors must be considered carefully to obtain a desirable 
biofumigant product according to good IPM practices. 
In complement to the toxicity consideration of FVOC(s) 
as an active compound, the excipients of the formula 
should be biologically safe for human consumption as 
well. Moreover, the chemical and physical compatibility 
of each component in the formula should also be care-
fully considered, to make sure there is no chemical reac-
tion between active components and excipients as well as 
among excipients. Lastly, the economic aspect is an evita-
ble factor, particularly for commercial products. Among 
the economic considerations are the price of each com-
ponent, the availability of each raw material, and the cost 
of process production.

Various formulas of volatile organic compound-based 
biofumigant have been developed, but very few of 
these product candidates or prototypes were success-
fully released as commercial products (Fig.  3). One of 
the most important considerations in developing a suit-
able formula is the physical and chemical properties of 
the FVOC candidate, particularly their small molecu-
lar weight and lipophilic property. The easiest and most 
affordable formulation form for FVOC-based biofumi-
gant is an aerosol spray. The FVOCs as active compounds 
can be dispersed in other volatile organic solvents such 
as ethanol or in fixed oil as micro/nanoemulsion (Ziedan 
et  al. 2022). However, most of the current formulas are 
based on plant essential oils. Therefore, there is a pos-
sibility of nanoemulsion formulation of microbial vola-
tile compound-based products in the future. Another 
approach is combining FVOCs with edible films that 
are usually used for coating hard-texture fruits such as 
oranges, apples, avocados, and mango, but this method 
is not suitable for soft-texture and easily perishable fruits 
such as grapes and strawberries (Zuhal et al. 2018). One 
of the prominent benefits of this approach is the ability 
to increase retain time of FVOC molecules, ensuring 
the prevention of microbial spoilage. This is particularly 
important for long-term storage and long-chain distribu-
tion. Another possible breakthrough is the development 
of controlled-released biofumigant. The volatile active 
compound is formulated in the suitable matrix to regu-
late in such a way that the active compound is controlled 
and released so that it remains at an effective concentra-
tion as an effective biocontrol agent. Although such an 
idea is probably still in the infancy of developing biofumi-
gant formulation, this delivery system has been advanced 
in the pharmaceutical field (Opoku‐Damoah et  al. 
2022). Similar to pharmaceutical gasses, direct delivery 
of FVOCs for biofumigant purposes might face some 
problems, particularly the uncontrollable and toxicity 
consideration of these gasses. Therefore, it is important 

to develop a more targeted and controlled delivery for-
mula. Finally, the development of novel delivery formulas 
to improve the quality and effectiveness of biofumigant 
products is inevitable as a future prospect.

Conclusion
As semiochemicals, FVOCs play an important and 
unique role in indirect inter- and intra-kingdom com-
munication between fungi and other organisms, either 
mutualistic or antagonistic. In the antagonistic effect, 
the proposed mechanism of FVOCs includes altera-
tion of the morphology of cell wall and cell membrane, 
influencing intracellular redox balance, elevating ROS 
level, and also possibly damaging DNA target. Based 
on this antagonistic property, some beneficial FVOCs 
can be utilized as a biological control agent and biofu-
migant to combat microbial pathogens in postharvest 
fruit. The antimicrobial spectrum of FVOCs is generally 
broader because of their expeditious conversion to gas-
ses phase, dispersed easily in fruit commodities without 
direct physical contact, thus persevering organolep-
tic properties of the fruit. For the development of an 
FVOC-based biocontrol product, the formulation 
should consider the compatibility of the formula with 
fruits, the toxicity effect to humans, and cost produc-
tion to ensure the effectiveness of the formula.
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