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for maximum crop productivity.

against plant pathogens was highlighted.

agriculture

Background: Scientific approaches into modern agricultural systems, as opposed to the use of synthetic pesticides
in food production, became important by exploring endophytic fungi capable of protecting plants against pathogens

Main body: Diverse endophytic microbes colonizing the internal tissue of plants exhibit beneficial and pathologi-
cal effects on plants. The beneficial endophytic fungi assisted plants in the control of pathogenic endophytic fungi in
plants due to their ability to directly or indirectly promote plant health. Inefficient agricultural practices and envi-
ronmental factors contribute to the disease emergence in plants. Endophytic fungi employed diverse mechanisms

in phytopathogen control by activating and inducing plant resistance through gene expression, synthesis of fungi-
derived metabolite compounds, and hormonal signaling molecules. The mutual coexistence between endophytic
fungi and host plants remains an important mechanism in disease suppression. An in-depth understanding and
selection of beneficial endophytic fungi and interaction between pathogens and host plants are important in manag-
ing challenges associated with the endophyte biocontrol mechanisms.

Conclusion: Research findings on the use of endophytic fungi as bioinoculants are advancing, and understand-
ing endophytic fungi antibiosis action through the synthesis of biocontrol agents (BCAs) can, however, be explored
in integrated plant disease management. Therefore, in this review, the biocontrol mechanism of endophytic fungi

Keywords: Biocontrol mechanism, Endophytic microbiome, Fungal diversity, Plant-soil interface, Sustainable

Background

The scientific approaches to the study of plant-fungal
interactions are becoming interesting in modern agri-
culture with prospects to ensure food security and zero
malnutrition among the world populace (Sharma et al.
2021). In recent times, a higher world population index
by 2050 has been envisaged with emphasis and recom-
mendations on the use of biological approaches in tack-
ling food demand pressure, food insecurity, and future
food scarcity (Sahu and Mishra 2021). From antiquity,
farmers employed diverse approaches to enhance food
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production using agrochemicals, which are not sustain-
able due to negative threats to the ecosystem (Glick et al.
2001). To this premise, checkmating these threats to the
ecosystem and exploring potential endophytic microbes
will help achieve a stable ecosystem and grow pathogen-
free plants for higher crop productivity (Akanmu et al.
2021).

Researches focusing on endophytic microbes and
exploration as bioinoculants have created many oppor-
tunities as a substitute for synthetic pesticides usage in
modern agricultural systems (Orozco-Mosqueda et al.
2021). Nevertheless, information on the endophytic fungi
antibiosis action through the synthesis of biocontrol
agents (BCAs) can, however, be explored in integrated
plant disease management, which is the focus of this
review paper.
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Literarily, the discreet regions in the internal tis-
sue of plants are referred to as the endosphere and
the microorganisms found in these regions are called
endophytic microbes (Dubey et al. 2020). Of most
interesting, microbial endophytes establish mutual-
ism or antagonism association with the host plants,
depending on their similar or dissimilar genetic make-
up. The beneficial types that do not express any patho-
logical effects with unique plant growth-promoting
(PGP) attributes, such as phytohormone synthesis,
nutrient acquisition, secretion of BCAs, and stress
induction mechanism, are referred to as plant growth-
promoting endophytes (Adeleke et al. 2021).

The endosymbiotic relationship of endophytic fungi
with the host plants aimed to contribute to plant
growth and pathogen control depending on their colo-
nization and secretion of biocontrol agents (Reshma
et al. 2019). Most endophytic microbiomes in the plant
endosphere have been reported to influence plant
phenotypic functions against environmental stresses
and control plant pathogens (Yu et al. 2019). Recent
findings have pointed out the need to elucidate how
endophytic microbes can be engineered in agricultural
biotechnology for plant health sustainability and inte-
gration in crop breeding (Zhang et al. 2020). Depend-
ing on the plant organ location, some endophytic fungi
inhabiting below ground level easily change form to
become endophytes due to proximity to the root endo-
sphere. Interestingly, evidence has shown the dynamic
nature, colonization, and infiltration of endophytic
fungi from the external root environment (rhizos-
phere) into the internal tissue of plants (endosphere)
to establish endophytic microbial communities (Yan
et al. 2019).

Endophytic microbes directly or indirectly stimu-
late plant growth and sustain plant health based on
their genes involved in metabolic pathways (Baghel
et al. 2020). The biocontrol potential of endophytic
microbes can be attributed to their ability to colonize
plant tissues, produce hydrogen cyanide, and exopol-
ysaccharide, and stimulate novel genes involved in
secretion systems and secondary metabolite secre-
tions (Singh et al. 2021). Due to the under-exploration
of endophytic fungi in plant disease control; research
efforts toward harnessing their bioactive secondary
metabolites as biopesticides and incorporation into
plant disease control remain fundamental and will
help mitigate the effect of synthetic pesticides appli-
cation on plant growth for improved crop produc-
tion. Therefore, this review provided an update of the
unique features of endophytic fungi, and the mecha-
nisms necessitating their roles in plant protection
against phytopathogens.
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Main body

Endophytic fungi classification and characteristics

in the endosphere

Screening of endophytic fungi against some plant patho-
gens has been recently intensified by Abaya et al. (2021),
due to their effectiveness as a source biocontrol agent.
Endophytic microbes enhance plant growth, diseases
tolerance and control, and carbon sequestration (Wang
et al. 2022). Endophytic fungi inhabiting various plant
compartments broadly promote plant growth through
different mechanisms classified as direct and indirect
mechanisms (Adeleke and Babalola 2022). In the direct
mechanism, the endophytes regulate various plant hor-
mones, such as cytokinin, ethylene, and auxins, enhance
soil nutrient availability, which includes phosphorus
and iron solubilization, siderophore production, and
nitrogen fixation; whereas in the indirect mechanism,
the endophytes prevent damage to the plants by releas-
ing enzymes, antibiotics, hydrogen cyanide, and volatile
compounds which inhibit the activities of pathogens,
and induce systemic resistance (Segaran and Sathiavelu
2019).

Suebrasri et al. (2020) reported the production of plant
growth-promoting metabolites, such as the enzymes
(protease, xylanase, amylase, and cellulase), and indole-3-
acetic acid by endophytic fungi, namely; Daldinia
eschscholtzii, Diaporthe phaseolorum, Macrophomina
phaseolina, Trichoderma koningii, and T. erinaceum from
Sunchocke and medicinal plants. It is interesting to note
that M. phaseolina, a notorious plant pathogen, can be
beneficial to plants as reported by Suebrasri et al. (2020);
hence, it could be explored for more plant beneficial
activities. Also, the strain of T. koningii (ST-KKU1) dis-
covered by Suebrasri et al. (2020) is also different from
the strain T. koningii SMF2, which has previously been
reported by Xiao-Yan et al. (2006) to be active against
phytopathogens. Sravani et al. (2020) also reported the
ability of endophytic fungi from the Hypocreales fam-
ily to prevent their host plant from insect infection by
releasing peramine, which prevented nematodes, insects,
and other parasites from feeding on them. Also, authors
reported secretion of indole-like compounds, such as;
diacetamide and sesquiterpene from endophytic fungi,
which exerted lethal effects on the other microbes, which
could be pathogenic to their host plant. Furthermore,
endophytic fungi contributed to the enhancement of root
development patterns in their host plants to increase
access to water and other nutrients.

Fungal endophytes are classified according to differ-
ent criteria. For instance; (i) based on ecology, they are
classified into clavicipitaceous and non-clavicipitaceous
endophytes, (ii) based on the mode of reproduction,
they are classified as sexual and asexual endophytes, (iii)
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according to transmission, they are classified as vertically
and horizontally transmitted endophytes, (iv) according
to the source of nutrition, they are classified as biotrophic
or necrotrophic endophytes, (v) according to the expres-
sion of infection, they are classified as symptomatic and
asymptomatic endophytes and (vi) based on the body
part they attack, they are classified as foliar and root
endophytes (Bamisile et al. 2018). The summary of endo-
phytic fungi classification was presented in Table 1.

Systemic frontline networking of endophytic fungi

for plant protection

In recent times, research into the plant-microbial interac-
tions in the below-and-above plant levels has been con-
ceptualized on the endosphere inhabitants. The microbial
networking in the root endosphere regions can be influ-
enced by diverse biotic and abiotic factors (Adeleke and
Babalola 2021a). The microbial domain tends to show
high biomass below ground level compared to the phyl-
losphere depending on the prevailing environmental
factors (Ananda and Sridhar 2002). Urbina et al. (2018)
reported a higher microbial population in the below plant
parts compared to the stem due to the high rhizodepo-
sition of organic molecules, which mediated microbial
activities below ground.

From the literature, studies on fungal isolation from
the plant environments capable of sustaining plant
growth and health were known with less exploration in
phytopathogen control (Bilal et al. 2018). The aforemen-
tioned might be due to a lack of information on their
transitional networking in the plant-root interface and
the type of metabolite produced. Plant roots inhabit-
ing fungi have been classified as natural micro-flora in
the endo-rhizosphere, whereas those causing diseases in
plants were classified to be found dominant in the soil-
root environment (Sylvia and Chellemi 2001). Research
into the understanding of association that exists among
endophyte colonizing plant roots have enabled scien-
tists to deduce their functional traits by in vitro assay
(Vélez et al. 2017). The rhizosphere is regarded as a sub-
set of root endophytes because they can easily infiltrate
from the external soil environment into the plant roots
and colonize the region (Ghaffari et al. 2019). The poten-
tial of endophytic fungi to induce plant resistance to
environmental stress adaptors and phytopathogens has
necessitated more research in their exploration in plant
disease management. Additionally, the beneficial plant—
microbe cooperation for increased biomass yield can be
linked to the diverse functions of these microbes in the
environment.

Insights into the community structure and lifestyle
of the endophytic fungi in some plants by combining
diverse approaches have been reported to determine
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their functional profiling (Manzotti et al. 2020). The
frontline networking of diverse fungal communities
in the plant-root interface can be influenced by envi-
ronmental factors; biotic, such as pathogens, abiotic,
salinity, drought, and high temperature. (Nadeem et al.
2014). Root exudate secretion and substrate metabo-
lism; however, serve as key frontline components and
driving factors mediating biodiversity and metabolism
of fungal communities’ belowground level (WozZniak
et al. 2019). Based on the nutrient pool in the soil-root
interface, this region has been recognized as a ‘hotspot;
which facilitates the establishment of microbial com-
munities and colonization of root-associated endo-
phytic microbes (Liu et al. 2019).

Critical evaluation of metabolite secretion, which
facilitates plant-microbe communication, is important
to reveal the complex dynamics and type of interac-
tions that exist between endophytic microbes and the
host plants (Adeleke and Babalola 2021b). An approach
by reductionists stated an impressive production of root
exudates from plants (Qu et al. 2020). The advancement
in endosphere biology through the combined strate-
gies in understanding plant-fungal interactions can help
develop a stable approach to fungal biodiversity in plants.

Several beneficial endophytes with bioprospecting in
agriculture have been identified in diverse plant species
under different climatic and geographical locations (Jia
et al. 2016). They can be isolated and identified either
by using direct observation or culture-dependent tech-
niques. The direct observation enabled direct visualiza-
tion of fungal in plant tissues with the aid of a light and
electron microscope, which reflect endophytic fungal
species and those that cannot be cultured on normal
growth media (Nazir and Rahman 2018). However, this
method can only be used to detect the presence of endo-
phytic fungi by revealing the hyphal structure without the
taxonomic grouping, which suggested the need for the
cultivation-dependent method. In the culture-dependent
technique, endophytic fungi can be isolated from plant
tissues and subjected to conventional or molecular evalu-
ation. The conventional method involves the morpho-
logical characterization, whereas molecularly, ribosomal
DNA Internal Transcribed Spacer (ITS) sequence analy-
sis was employed (Nazir and Rahman 2018).

Endophytes peculiar to different plants protect them
from phytopathogens and promote their growth through
different mechanisms. This protection was conferred on
the plants to enhance crop productivity and consequently
food security. The majority of plant endophytic fungi
are active against plant insects; hence, the production of
plant insecticides for commercial purposes from these
endophytes and their metabolites will go a long way in
improving food security.
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Mechanisms employed by endophytic fungi

in phytopathogen control

Fungal induced resistance in plant

Endophytic fungi colonize the internal part of both mon-
ocotyledonous and dicotyledonous plants, help to induce
resistance, and promote plant growth in a diverse num-
ber of systems (Waqas et al. 2012). Though, most endo-
phytes solely colonize the root, inducing a system that
protects other parts of the plant (Adeleke et al. 2021).
Induced resistance to plant pathogen is a preventive
mechanism that is actively favored by the host plant’s
chemical and physical barriers and induced by both abi-
otic and biotic factors (Wani et al. 2016). These agents
(especially fungi) induce exchangeable signals in the host
plant, so that they activate an acquired response to subse-
quent threats from the pathogen(s). An induced response
is usually triggered by some agents that impel distinctive
expression of genes, metabolic changes, and protein syn-
thesis. The plant’s metabolic swift and change in the eli-
gibility of the plant as a host has led to the reduction in
disease level (Latz et al. 2018). As mentioned above, both
biotic and abiotic factors can induce host response locally
or systemically. The activation of defense mechanisms
produced by plants for protection against pathogens is
usually referred to as priming (Martinez-Medina et al.
2016). Plant-induced resistance is most often linked to
the mobilization potential for cellular defense responses
against nonself.

Molitor et al. (2011) reported the mechanisms of S.
indica in inducing plants’ resistance to barley powdery
mildew. Authors inferred that the induced resistance to
powdery mildew by S. indica can be a result of physi-
ological responses by reducing pathogen penetration via
an increase in local cell death and papillae formation of
barley with an up-regulation of HvPR17b (a PR gene) in
foliage. Other changes in the expression of PR gene in the
plant root were also noticed. Likewise, genes denoting
Hsp70, PR1, PR2, and BCI-7 (barley chemically induced
7) are a set of genes instigating protein synthesis, which
activate defense reactions as a result of inoculating bar-
ley with Blumeria graminis f. sp. hordei (Molitor et al.
2011). These PR-complex are exclusively involved in both
direct and indirect plant growth promotion and antifun-
gal activities.

An investigation conducted on rice roots showed that
Harpophora oryzae suppressed the effect of Pyricu-
laria oryzae in rice (Su et al. 2013). Also, Polonio et al.
(2015) showed the effect of endophyte—Diaporthe citri
on Guaco (Mikania glomerata Spreng.) associated path-
ogens, such as Fusarium solani and Didymella bryo-
niae. Endophytic fungi induced antimicrobial activity
against both pathogens and also increased the growth
of the plant (Table 2). Furthermore, OsWRKY4—an
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SA-dependent transcription gene known to induce
resistance against rice blast was up-regulated in research
by Shimono et al. (2007) using Harpophora oryzae—an
endophytic fungus, to prevent root-necrotization by
Pyricularia oryzae infection in rice. Efforts to unravel
fungal metabolites associated with plant resistance for
commercial purposes in striving against phytopathogens
have been documented (Peng et al. 2021). Many natural
bioproducts, such as terpenoids, polyketides, steroids,
quinones, flavonoids, alkaloids, and peptides, have been
extracted from endophytes, with most reported to have
antimicrobial activities against plant pathogens (Latz
etal. 2018).

The combined effect of diverse microorganisms in the
root endosphere can trigger synergistic effects and the
production of BCAs used to control the growth of phy-
topathogens (Rojas et al. 2020). Often based on speci-
ficity, endophyte-induced metabolites can share similar
pathways to induce metabolism. A familiar instance is
the recent finding that most endophytic fungi produce
anticancer substances in Taxus brevifolia (El-Bialy and
El-Bastawisy 2020). But, many of these endophytes were
discovered working simultaneously with other organisms
as producers (Heinig et al. 2013).

To confirm the potency of an antimicrobial substance
produced by an endophyte against pathogens, most
importantly, close contact with the pathogen should be
confirmed. Although, it is quite difficult to confirm this
finding since endophytic fungi are embedded in the plant
endosphere and the rate of metabolite synthesis may
be hard to quantify. Nonetheless, metabolites induced
by plant endophyte could be translocated through the
microorganism to the base of these pathogens within
the plant; whereas, organic compounds secreted can
easily spread to the site of infection (Mejia et al. 2008).
Meanwhile, it is yet to be confirmed whether the num-
ber of compounds secreted at the site of infection could
be enough to control the invasion of phytopathogens, or
may be other mechanisms are involved in the plant path-
ogen management.

Endophytic fungi-derived compounds activating plant
defenses

Just like human responses, nonself/microbial compo-
nents are easily recognized by the plant as specific for-
eign substances. Host plants can easily be prepared for
potentially harmful microorganisms by inducing defense
responses. Although both endophytes and pathogens
are recognized by the host plant, in the same manner,
the response to both foreign bodies is quite different
(Wani et al. 2016). Invariably, the favorable coexistence
between endophyte and host plant revealed that fungal-
induced resistance remains an important mechanism
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used by endophytic microorganisms in disease suppres-
sion (Fig. 1). Normally, specific endophytic fungal com-
ponents, viz., cell wall, lipids, protein substances, volatile
compounds, BCA, and some molecules with hormonal
responses, are usually recognized by the host plant. These
compounds/components are selective endophyte-derived
compounds that induce plant defense mechanisms (Latz
et al. 2018).

Components of microbial origin are oftentimes
referred to as MAMPS—microbe-associated molecular
patterns or PAMPS pathogen-associated molecular pat-
terns, which induce MAMP/PAMP-triggered immuno-
logical response (Niirnberger and Kemmerling 2009).
Components of the fungal cell wall, such as B-glucans
and chitin, are referred to as MAMPs, they are usually
recognized by the receptors of plants to trigger immune
responses. Endophytic secretions, such as peptides and
proteins, have been described by most researchers as
agents that trigger host plant responses (Rojas et al.
2020). Other secreted enzymes, viz, cellulase, xylanases,
and chitinases, were produced as a result of infection also
induce plant defense and are easily identified by hosts via
their decomposed products (Druzhinina et al. 2011).

Proteins rich in cysteine and fungal effectors are
secreted as a result of endophytic and pathogenic inhabi-
tation processes to increase host plant compatibility, by
inducing physiological and defense responses (Ku et al.
2020). Nonetheless, different studies have shown that
compounds produced to inhibit the growth of compet-
ing microorganisms can also instigate resistance (Akinola
and Babalola 2021). The above-mentioned products
obtained from endophytic fungi have the complexity and
potential to induce plant defense responses necessary to
reduce the menace posed by plant pathogens and other
soil-related anomalies.

Hormonal signaling and its ability to induce resistance

Plant hormones are crucial in the transmission of struc-
tural and comprehensively inherent resistance. The sys-
temically induced plant resistance can be classified into
two; namely; ISR-induced systemic resistance and SAR-
systemically acquired resistance. Ethylene and hormonal
jasmonic acid (JA) are the most important secretion pro-
duced in ISR, whereas SA-salicylic acid plays a pivotal
role in systemically acquired resistance (Latz et al. 2018).
The coherent relationship among hormonal responses is
induced by the coexistence of ethylene, JA, and SA main-
tains defensive responses in the plant (Latz et al. 2018).
For instance, the defensive response induced by the bio-
logical agents, viz., Serendipita indica, Penicillium sp.,
and Trichoderma asperellum, has induced the produc-
tion of ethylene and JA-dependent systemic resistance
that plays important role in preventing the inhabitation
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of host pathogens (Hossain et al. 2008). Meanwhile, S.
indica instigated other resistance pathways different
from ethylene/JA in other pathophysiological responses.
In another scenario, SA-dependent pathway is induced
in a T. asperellum inhabited plant (Yoshioka et al. 2012).
This showed that hormonal responses and interaction
with the host plant were very complex, withal, numerous
events; and cross-communication is normally involved in
plant-induced responses. Microbial inhabitation changes
a plant’s normal reflexes and profile, at times, rather
than affecting only a single hormonal response, it brings
together a couple of them. Nevertheless, the coexistence
between microbial strain and the host of the inducing
agent also determines variations in hormonal responses.
Despite the tremendous progress in the studies on signal
transfer in induced resistance, there is still a lacuna in
attributing functions to each hormone in signal transduc-
tion, especially in complex systems. Therefore, there is a
need to intensify the defense mechanisms in a plant and
adopt it as a biomarker to detect an induced resistance.

Use of plant defense mechanisms to detect induced
resistance

An induced resistance occurs as a result of activated
plant-defense mechanisms to make the plant less suscep-
tible to a variety of pathogens. Most of these mechanisms
are activated simultaneously to help strengthen plant
physical barriers, and secretion of pathogen-repellants
in the form of proteins and enzymes with antimicrobial
properties to prevent phytopathogens (Farhangi-Abriz
and Ghassemi-Golezani 2019).

To study if an endophytic fungus induces a resistance
mechanism against a specific pathogen, two (2) crite-
ria are used to test and classify plant responses. Firstly,
the induced responses should control the targeted plant
pathogen(s). There should be proven that fungal-induced
response could effectively eradicate the pathogens, and
expressions observed therewith should be related to hin-
dering pathogen infection. Secondly, the elimination pro-
cess of phytopathogen should be correlated with Koch’s
postulate. This can be verified by noticing the defense
response expression after introducing the pathogen to
the plant. In essence, adopting the principle of exclu-
sion is an acceptable condition to evaluate the effective-
ness of induced resistance in plant protection. With that
said, excluding a direct in vitro assessment of an induced
resistance assumes the effect of the induced response to
the pathogen is unacceptable.

Another conserved process is the ability to strengthen
a plant’s structural barriers to resist the easy invasion of
pathogens and reinforcement of cell wall appositions,
which might have been involved (Waller et al. 2005).
According to different studies, this effect occurred as a
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Fig. 1 Mechanism of endophytic fungi in plant growth promotion and disease suppression

result of inducing agents. For instance, a study on Tricho-
derma harzianum (T-22) showed the expression of an
enzyme (phenylalanine ammonia-lyase—PAL) involved
in lignin formation was well enhanced in maize (Shoresh
et al. 2010), whereas in the case of another strain T. har-
zianum (T-203), the cortical and epidermal cell walls of
cucumber fruit were strengthened and the process was
confirmed to have been induced by intercellular inhabi-
tation of endophytic fungi (Yedidia et al. 1999). Systemic
introduction of inducing agents has been very useful in
the promotion/activation of important proteins and
metabolites in plants, with antimicrobial properties
that are very effective against plant pathogens. Another
example of a useful metabolite was phytoalexin-type
compounds reported by Oliveira et al. (2016). The path-
ogen-related (PR) proteins produced as a result of the
colonization of endophytic fungus also perform other
roles, such as stress response and antimicrobial proper-
ties. These metabolites include peptides and enzymes,
viz., thaumatin-like proteins, lipid transfer proteins, and

thionins (Sels et al. 2008). In research by Lahlali et al.
(2014), a plant-related protein (PR2) —f-1, 3-glucanase
was enhanced in oilseed rape plants infected by Plasmo-
diophora brassicae when an endophytic fungus—Hetero-
conium chaetospira colonized the plant. Also, Combes
et al. (2012) detected a systemic resistance induced by
an endophytic fungus—Paraconiothyrium variable on
Cephalotaxus harringtonia infected by Fusarium oxyspo-
rum, which led to the production of important metabo-
lites such as 13-0xo0-9,11-octadecadienoic acid and
beauvericin that are capably inhibiting the growth and
pathogenic effect of E oxysporum as shown in Table 2.
An induced resistance activated by E solani (strain
Fs-K)—infested tomato enhanced the expression of thau-
matin-like (PR5) and endo-proteinase (PR7) enzymes
in the plant (Kavroulakis et al. 2007). More so, Waller
et al. (2008) also hypothesized the up-regulation of pro-
tein HvPR17b was suspected to have antifungal activity
in a barley-infested with endophytic—Serendipita indica
against Blumeria graminis f. sp. hordei. The synergistic



Adeleke et al. Egyptian Journal of Biological Pest Control (2022) 32:46

effect of Fusarium graminearum and S. indica on barley
was also reported by Deshmukh and Kogel (2007) with
the reduced expression of pathogen-related genes (PR1b
and PR5), which means PR genes are not always involved/
pronounced in all systems.

Antibiosis activities of endophytic fungi against plant
pathogens

Antibiosis—an antagonistic relationship involving endo-
phytic fungal control of potential plant pathogens using
metabolic substances was produced by endophytes. A
purified form of Efe-AfpA mined from an apoplastic fluid
of endophyte-inoculated red fescue showed anti-parasitic
activity against Sclerotinia homoeocarpa (Ambrose and
Belanger 2012). The same result was also observed in the
recombinant product of Efe-AfpA expressed gene found
in Pichia pastoris. In a transcriptome study to detect the
percentage protein (Efe-AfpA) produced from the endo-
phytic relationship between Epichloé festucae and Fes-
tuca rubra sp., a 6%—Efe-AfpA was produced from the
fungal transcriptome. The product mined from the study
was observed to have the same property as the product
secreted in a relationship between Aspergillus spp. and
Penicillium sp. as reported by Tian et al. (2017).

The synergy between endophytic funguses—~Paraco-
niothyrium strain SSMO001 and a yew tree producing
Taxol against wood-decaying fungus was investigated
by Rafiqi et al. (2013). Although, the yew tree usually
forms bark cracks that allow easy penetration of patho-
gen. Meanwhile, the endophytic fungus was observed
growing toward these cracks in a way to prevent Taxol
accumulation and also down-regulated the transcription
of Taxus genes, viz., DXP reductoisomerase and taxadi-
ene synthase, that is very crucial for Taxol secretion. An
in vitro assessment of strain SSM001 endophytic fungus
and Taxol treatment prevented the growth of impor-
tant wood-decaying fungal species, such as: Perennipo-
ria subacida, Phaeolus schweinitzii, and Heterobasidion
annosum, meanwhile, the growth of the endophyte strain
SSMO001 was not hindered by Taxol (Soliman et al. 2015).

Competition

Microbial competition remains an important factor
determining plant tissue inhabitation and a probable way
endophytes inhibit pathogens from colonization (Mar-
tinuz et al. 2012). The endophytic fungus colonizes plant
tissues systemically and locally, within or outside the tis-
sues. Through this method, rapid inhabitation and feed-
ing on available nutrients are easily explored, and also
occupy the space that could have been filled by potential
pathogens. A study by Mohandoss and Suryanarayanan
(2009) on mango leaves showed that the fumigation of
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the tree eliminated specific endophytes, creating space
for pathogens to grow.

Phyto-pathological control mechanisms involving com-
petitive exclusion incorporate the co-occurrence of other
mechanisms and also require endophytic colonization of
intracellular plant parts where the pathogen might have
attacked. For instance, the treatment of a sterile seed with
endophytic fungus isolated from a cacao tree reduced the
effect of Phytophthora spp. on the plant leaves (Arnold
et al. 2003). The colonization of the oilseed roots by an
endophytic fungus—Heteroconium chaetospira, nega-
tively correlated with the symptoms of clubroot disease
(Lahlali et al. 2014). Withal, an increase in the inoculum
size of the pathogen reduced the control effect, show-
ing the restraints of competition. Competitive exclusion
could be well studied using in planta microscopic assess-
ment and quantification of endophyte biomass related to
phytopathogen management. To evaluate endophyte—
pathogen in planta interaction, visualization using
microscopy is advisable, when investigating pathogen
strains and fungal BCA (Latz et al. 2018). In situ detec-
tion of metabolite distribution, microorganism involved
and genomic evaluation of the role of mined metabolites
could be determined using molecular 3D cartography-
mass spectrometry as described by Floros et al. (2017).

Mycoparasitism

Fungal parasitism involves the direct reliance of a fungus
on another fungus for nutrients. The process of myco-
parasitism occurs either through necrotrophic or bio-
trophic relationships. In necro-trophism, parasites live
on the dead cells of the host, while bio-trophism is a situ-
ation, whereby the parasite takes nutrients from a living
host (Kim and Vujanovic 2016).

Normally, in planta verification of mycoparasitism is
very hard, since the transfer of nutrients among micro-
organisms is very tedious to detect. In essence, most
studies claiming mycoparasitism only based their verifi-
cations on circumstantial shreds of evidence. The close
relationship between two fungi is not enough to claim
a mycoparasitism, rather they are referred to as a fungi-
colous relationship. Mycoparasitism may occur directly
or indirectly. In indirect fungal-parasitism, a metabo-
lite produced by the parasite releases nutrients from the
host at a distance, while direct contact with the prey is
referred to as direct mycoparasitism (Latz et al. 2018).
In either case, the parasite secrets some metabolites to
release host nutrients such as toxins, antibiotics, and
cell wall degrading enzymes (Kim and Vujanovic 2016).
For instance, a study by Chamoun et al. (2015) showed
the production of specialized compounds in a relation-
ship between Manatephorus cucumeris and Stachybotris
elegans, where S. elegans was preying on T. cucumeris.
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A lot of researchers misplace mycoparasitism and anti-
biosis with potential intermingling relatedness making it
very hard to differentiate interactions, but this has shown
that parasitic relationships among microorganisms could
employ several mechanisms to prey on each other.

Since microbial interactions are easily studied using
conventional methods, the inhibitory relationship among
microorganisms becomes very easy to study using tra-
ditional methods, such as microscopy techniques and
culturing in Petri dishes than in planta screening. Using
simple microscopic methods, mycoparasite is observed
having direct contact with the host either by coiling
around the hyphae of the prey for easy acquisition of
nutrients. This relationship was demonstrated in a study
by Donayre and Dalisay (2016). An endophytic fungus,
Geotrichum sp. isolated from Echinochloa glabrescens
was observed having a direct mycoparasitic relationship
with a soil-borne pathogen, Thanatephorus cucumeris.
Likewise, three (3) endophytic fungi isolated from Phrag-
mites australis were observed penetrating and coiling
around the hyphae of soil-borne pathogens to degrade
their cytoplasm, meanwhile, other degrading enzymes,
viz., B-1, 3-glucanase, and extracellular cell wall degrad-
ing enzymes, were involved in the process (Cao et al
2009).

Challenges associated with endophyte biocontrol
mechanisms

For an in-depth understanding, utilization, and selec-
tion of endophytic fungi, an assessment of the biology
behind the interaction between pathogen, host plant, and
endophytic fungus is required in addition to the physi-
ological activities involved in the tie-in. Some impor-
tant principles are generally acceptable for the study of
endophytic fungus and biological control agents (BCAs).
These include; (i) activation of plant defense mechanism
induced by endophyte, (ii) inhibition via mycoparasitism,
(iii) inhibition through antibiosis, and (iv) competition
for nutrient and space (Latz et al. 2018). Also, the most
times and several mechanisms may be activated at the
same time. Nutrient acquisition for plant growth promo-
tion or modification of the level of plant growth hormone
can generally improve plant health and disease suppres-
sion (Berthelot et al. 2016). Studying the complex interac-
tion between pathogen, host plant, BCAs and the process
of pathogen inhibition are complicated to study. To bet-
ter explore the relationship between highlighted factors,
several questions are raised and these include; (i) are the
mechanisms involved in BCAs really assessable within
the tissue of plant (in planta)? Because most mecha-
nisms associated with endophytic metabolite production
in plants are usually performed under in vitro condi-
tions. Putting out one of the factors from the tripartite
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interaction put a lacuna on the importance of endophytes
on disease suppression in the plant. Therefore, evaluating
endophyte-pathogen interaction using in vitro assess-
ment will only result in false conclusions. For instance, an
in vitro experiment on Pseudozyma flocculosa- an endo-
phytic yeast suggested to inhibit the growth of Blumeria
graminis in barley via antibiosis, but after adopting cellu-
lar microscopy and transcriptomics to study the control
mechanism, it was concluded that the parasitic relation-
ship was mycoparasitism not antibiosis (Laur et al. 2018).
(if) what are the pattern and colonization methods of a
biological control agent? Understanding the mechanism
involved in BCA infiltration and pattern will help link
intra-and-intercellular endophytic structure to a disease
suppression mechanism (Compant et al. 2005), (iii) what
is the pathosystem involved in the BCA mechanism of
action? Understanding the mechanisms of biological con-
trol agents in phytopathogen management is also very
important. Conclusively, if a BCA was isolated from an
external surface and identified to be of endophytic origin
when applied in planta, does the BCA grow intracellu-
larly? It is necessary to confirm the function of the bio-
logical control agent within the plant tissue, to confirm
its potency in phytopathogen control (Busby et al. 2016).

Conclusions

Endophytic microbes employ direct and indirect mecha-
nism options in plant growth promotion and protection
against pathogens. Exploring endophytic microbes as
bioinoculants, upon inoculation can cause changes in the
plant’s physiological and phenotypic modifications, thus
boosting plant tolerance to biotic and abiotic stressors.
The biotechnological importance of valuable metabolites
produced by endophytic fungi, which stimulate antibiosis
against phytopathogens for plant protection is less to be
fully explored in plant disease management.

The combined application of culture-dependent and
culture-independent techniques helps in the predictive
functional analysis of notable genes involved in phyto-
hormone synthesis, secretion systems, biocontrol, and
synthesis of cellular components, metabolic pathway, and
secondary metabolites (SM) from endophytic microbes.
The presence of biocontrol genes in some endophytic
fungi was suggested their ability to control plant diseases.
Studies have successfully shown the biocontrol activity of
endophytic fungi, which promise to be used in the syn-
thesis of certain novel BCA to confront the challenges
associated with phytopathogens control in plants. Nev-
ertheless, how endophyte infiltrates plant endosphere is
still a question that demands clarification by researchers.

The SM biosynthesis potential of endophytic fungi is
characterized by complex biocontrol activity, which can
be explored as valuable bioproducts. Hence, providing
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updated information on the plant growth-promoting
endophytic fungal species or yet-to-be culture endo-
phytic fungi will help discover their potential in pro-
ducing desirable metabolite compounds, which can be
harnessed as a biocontrol agent in the control of plant
diseases. For endophytic fungi to be successfully used in
sustaining plant health, it is necessary to understand fac-
tors mediating endophyte bioactivity on disease suppres-
sion, source and type of BCAs, how they are produced,
and the amount required to cause pathogen inhibition.
This review further recommended future studies on how
a specific amount of BCAs from endophytic fungi can be
obtained to confront challenges associated with the use
of endophyte fungi in plant disease suppression.
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