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Abstract 

Background:  Early blight disease of tomato caused by pathogenic fungi Alternaria solani is the most significant and 
common disease throughout the world as well as in Kingdom of Saudi Arabia. The aim of this study was to isolate 
and identify native Trichoderma species from the Jeddah region in Saudi Arabia; evaluate their antagonistic potential 
against A. solani; and study their influence early blight disease severity in greenhouse and in open field.

Results:  The present study focused to explore the biocontrolling potential of native Trichoderma spp. against A. solani 
strain to compare with a conventional fungicide. Out of 21, 3 Trichoderma isolates showed an antifungal activity and 
significantly inhibited the mycelial growth of pathogen that were identified as Trichoderma atroviride, T. harzianum and 
T. longibrachiatum by their ITS region sequence analysis. Strong in vitro mycelial growth suppression (70.66%) was also 
recorded at 400 ppm Mancozeb (90%WP®) fungicide. Further, these Trichoderma bioagents and fungicide were fur‑
ther evaluated in greenhouse (artificially inoculated) and in field on naturally infected tomato plants. In greenhouse, 
(13.74%) disease severity after T. harzianum treatment was recorded, followed by T. longibrachiatum (25.83%) and T. 
atroviride (21.67%). The disease severity after fungicide (50 mg/L; 10 ml per plant) application was (7.91%). Further, 
positive impact on the plant biomarkers was demonstrated by all selected Trichoderma isolates in greenhouse. Under 
natural infection in season I, the disease severity (%) after T. longibrachiatum, T. atroviride and T. harzianum treatments 
was 11.5, 13.26 and 16.81%, respectively, followed by control (32.12%), whereas 7.18% disease severity was recorded 
after fungicide application.

Conclusions:  The results revealed that native Trichoderma of this region had potential to mitigate the early blight 
disease intensity in field.
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Background
Tomato (Solanum lycopersicum L.) is susceptible to dif-
ferent pests present in the environment such as nema-
todes, viruses, bacteria and fungus. Early blight disease 
of tomato caused by pathogenic fungi Alternaria solani is 

the most significant and common disease throughout the 
world as well as in Kingdom of Saudi Arabia (Imran et al. 
2021). This pathogen infects various solanaceous crops 
including eggplant, tomato, potato and pepper (Sallam 
and Abo-Elyousr, 2012). Numerous fungicides such as 
carbendazim, captan, mancozeb, propiconazole, copper 
oxychloride, propineb and tebuconazole are wildly used 
to fight against this pathogen (Deshmukh et  al. 2020). 
However, among all fungicides Mancozeb fungicide with 
different formulations has widely been used to control 
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the pathogen of early blight disease in tomato (Sowmya 
and Ram, 2021). Various studies have reported the signifi-
cant growth suppression of fungal pathogens in field con-
ditions (Yang et  al. 2019). The successful control of this 
pathogen by fungicides clearly demonstrated the sensitiv-
ity of this pathogen toward this fungicide. Although the 
development of resistance risk of Mancozeb in A. solani 
is low (Yang et al. 2019), the frequent use of fungicide can 
lead to the development of resistance in pathogen. Agri-
cultural practices and agro-chemical applications can 
control early blight disease and are generally considered 
effective (Adhikari et al. 2017). Inadequate utilization of 
the fungicides, however, implies serious environmental 
and human health hazards (Nishant et al. 2021). Further-
more, toxicity of fungicides confines applicability during 
fruiting period and multiple fungicide application may 
lead to resistance development in pathogens (Zhang et al. 
2021). Therefore, biological control of plant diseases is 
considered a safe and eco-friendly alternative approach 
(Imran et al. 2022). In nature, some bacterial and fungal 
species are found harmless, protecting the roots of plants 
from rhizospheric pathogens. Trichoderma spp. are pre-
eminent antagonists against various plants pathogens 
including nematodes, bacteria, and particularly fungi. 
They inhibit the growth of pathogens either directly as 
competitors for space and nutrients or by hyper-para-
sitism or indirectly by improving plant vigor, escalat-
ing stress lenience, promoting active uptake of nutrients 
and/or producing numerous secondary metabolites and 
pathogenesis-related (PR) proteins to plants (Zhang et al. 
2017). Many soil borne pathogens are controlled by T. 
harzianum triggering-induced systemic resistance by 
rapid root colonization (Kamala and Devi, 2012). Sec-
ondary metabolites of T. harzianum such as pyrone, 
harzianopyridone, furanone, palmitic acid, stigmasterol 
and anthraquinone have antimicrobial effects (Ahluwalia 
et  al. 2015). T. viride is also a significant bioagent and, 
due to its antagonistic activity, it has been widely used 
against many fungal plant pathogens (Mohamed and 
Gomaa, 2019). T. longibrachiatum as a promising biocon-
trol agent has been widely used because it secrets huge 
amount of peptaibols, small peptides approx. 5–20 amino 
acid residues in length, with a wide spectra of biological 
activities (Elegbede and Lateef, 2019).

Considering the importance of bio-control agents and 
rising fungicides resistance problems, the present study 
aimed to: obtain and identify native Trichoderma species 
from the Jeddah region in Saudi Arabia; evaluate their 
antagonistic potential against A. solani; study their influ-
ence early blight disease severity in greenhouse and in 
open field; and compare bio-agents with a conventional 
fungicide with respect to fruit yield and disease control in 
open field under natural infection conditions. This is the 

first study on the isolation and evaluation of Trichoderma 
and their utilization against early blight disease in fields 
of the Kingdom of Saudi Arabia (KSA).

Methods
Fungal strain and growth conditions
Highly virulent strain of A. solani “9013” was previously 
isolated by Imran et  al. (2022). This fungal strain was 
tested for pathogenicity and found highly virulent on 
tomato plants causing early blight disease. The strain was 
collected from the fungal stock culture of the laboratory. 
Strain was sub-cultured on PDA medium plates incu-
bated at 27 °C for 7 days. Culture was maintained at 4 °C 
for further use.

Isolation and field‑testing of Trichoderma as potential 
bioagents
For the isolation of naturally existing potential bioagents 
against fungal pathogens, soil samples were collected 
from the rhizosphere of healthy tomato plants. Then, 
5 ml of sterilized double distilled water was added to each 
2 g of soil sample, followed by mixing by vortexing. Dilu-
tions 10–4, 10–5, 10–6, 10–7, 10–8 and 10–9 were prepared 
from supernatant from each sample (Bin et al. 2020) and 
inoculated on rose Bengal (RB) medium plates and incu-
bated at 27 °C for 48 h. Germinating fungal colonies were 
further purified by single spore transfer (Dou et al. 2019). 
Colonies derived from single spores were further trans-
ferred to new PDA plates, and 3-mm-diameter mycelial 
disks from 3-day-old culture were transferred to PDA 
glass tubes. Fungal cultures were maintained in glycerol 
tubes and stored at 4 °C for further use.

In vitro screening and selection of antagonists
All isolates were tested for their antagonistic potential 
against the highly virulent A. solani strain. Antagonistic 
activity was determined on PDA plates. Bioagent iso-
lates grown on PDA for 3  days were used to determine 
the antagonistic effect by dual culture assay against A. 
solani strain. Briefly, 5-mm-diameter mycelial disk from 
pathogen and identical diameter disks from each bioag-
ent (priorly grown on PDA) were placed face to face on 
new PDA plates at equal distance from edges PDA plates 
containing pathogen disks were used as controls. Three 
replicates (each comprising 5 plates) were prepared for 
each potential bioagent isolate, and plates were incubated 
at 27  °C for 7  days. At this stage, in control plates the 
selected highly virulent A. solani strain would typically 
cover the whole plate. Diameters of pathogen isolate col-
onies on test plates were measured, and mean values were 
calculated to quantify the inhibitory effect of each poten-
tial bioagent isolate. The experiment was repeated twice. 
Based on pathogen colony mean diameters, bioagents 
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showing best antagonistic activity were selected for fur-
ther experiments.

Morphological and molecular identification of bioagents
All potential bioagent isolates were classified morpholog-
ically based on colony color, length and width of conidia, 
hyphae length, and shape and diameter of conidia 
(Kumar et al. 2012). Selected bioagent isolates were clas-
sified by amplification and Sanger sequencing of internal 
transcribed spacer (ITS) regions using generic primer 
pair ITS5 (5′GGA​AGT​AAA​AGT​CGT​AAC​AAGG3′) 
and ITS4 (5′TCC​TCC​GCT​TAT​TGA​TAT​GC3′) (White 
et  al. 1990). DNA of the selected isolates was extracted 
by CTAB as of pathogen. PCR was performed in a ther-
mal cycler with the final volume 50 µl of reaction mixture 
with this primer pair as described above for pathogen 
isolates. PCR was performed as following: initial denatur-
ation at 94 °C for 3 min followed by 30 cycles, denatura-
tion at 94 °C for 1 min, 56 °C for 30 s, 72 °C for 30 s, and 
final incubation at 72  °C for 10  min. Reaction products 
were cooled to 4 °C for 10 min. PCR products were then 
separated on 2% agarose gel in 1× Tris–acetate (TAE) 
buffer and stained with 0.5  μg ethidium bromide solu-
tion for 10 min, and an Alpha Imager™ gel imager system 
was used to record fluorescence images. PCR products 
were submitted to Sanger sequencing by Macrogen 
Company, Seoul, South Korea. Obtained sequences of 
PCR products were compared ITS sequences available 
in public domain of National Center for Biotechnology 
Information (NCBI) library using Basic Local Align-
ment Search Tool (BLAST). Respective potential bioag-
ent isolates were identified on the basis of their similarity 
to published reference sequences, and obtained new ITS 
sequences were submitted to NCBI under specific acces-
sion numbers. Phylogenetic trees were constructed from 
ITS1 sequence data with the help of the neighbor joining 
algorithm in MEGA 6X software package (Tamura et al. 
2013).

Establishment of conventional control of A. solani 
with chemical fungicides
For in  vitro mycelial inhibition virulent A. solani strain, 
different concentrations of a commercial fungicide Man-
cozeb (90% WP) [ethylenebisdicarbamates] were used 
that is recommended to control early blight disease in 
local commercial farming. Stock solution (0.5 g/L) of the 
fungicide was prepared in sterile double distilled water 
that was further used to prepare the tested concentra-
tions, viz. 50, 100, 200 and 400  ppm. These concentra-
tions were dissolved in PDA, and 5-mm mycelial disks 
from 7-day-old A. solani culture were placed face-down 
in the middle of fungicide-amended plates. PDA plate 
lacking fungicide but the pathogen was subjected as 

control. Plates were incubated at 27  °C for 7  days, and 
colony diameter was measured. Percent mycelial growth 
inhibition was calculated according to Bekker et  al. 
(2006) as: Percent inhibition = [(C − T)/C]*100, where, C 
representing colony diameter (mm) observed in controls, 
and T colony diameter (mm) observed in treatments. 
Experiments were performed in triplicates, with each 
replicate consisting of five plates. The experiment was 
repeated twice for the consistency of results.

Effect of potential Trchicoderma bioagents early blight 
disease severity
Under greenhouse condition
To test the efficacy of selected potential Trichoderma 
against early blight disease under greenhouse condi-
tions relevant to horticultural praxis, experiments were 
conducted (in 2020) in greenhouses of the Department 
of Arid Land Agriculture, King Abdulaziz University 
Jeddah, Saudi Arabia, with tomato variety “Doucen.” 
Briefly, tomato seeds were germinated and seedlings 
were grown in 18 cm plastic pots containing peat moss 
(1:3). At 3–4 leaf stage, seedlings were singled out to 
new pots. Selected potential Trichoderma isolates to be 
tested were grown on PDA for 5 days at 27  °C. Grow-
ing mycelia were scraped with a sterilized scraper and 
crushed in 20  ml of sterilized double distilled water, 
and resulting debris was filtered through 3 layers of 
cheese cloth to remove fragmented mycelium from 
spores. Twenty-days-old plants were sprayed with the 
resulting spore suspension (10  mL/plant) with a com-
pression sprayer (Blue Stallion Co., Ltd, India) (Singh 
et  al. 2019). Spore suspension of highly virulent A. 
solani strain priorly grown on PDA was prepared iden-
tical methods used for the preparation of Trichoderma 
suspension. Two days of spraying Trichoderma, patho-
gen spore suspension (104 spores mL−1 adjusted by 
hemo-cytometer) 5 mL/plant was sprayed with a com-
pression sprayer (Blue Stallion Co., Ltd, India). Plants 
sprayed first with potential bio-agent, but then only 
with sterilized distilled water at the time of pathogen 
spraying served as “healthy” control. In contrast, “dis-
eased” control plants were sprayed only with patho-
gen. Mancozeb fungicide as “conventional treatment” 
was sprayed at a concentration of 50  mg  L−1 (25  mL 
per plant) was sprayed at the same time of pathogen 
inoculation (Gondal et al. 2012). After pathogen inocu-
lation, plants were covered with sterile polythene bags 
for 3  days. Standard agronomic practices were carried 
out in greenhouse, and experiment was performed 
with 4 replicates for each treatment, with 3 plants for 
each replicate. The experiment was performed twice 
and disease severity was estimated with a grade 0–5 
disease rating scale as: 0 = leaves free from leaf spots; 
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1 = 0–5% of leaf area infected; 2 = 6–20% of leaf area 
infected; 3 = 21–40% leaf area infected; 4 = 41–70% leaf 
area infected; 5 = more than 70% of leaf area infected 
(Gondal et al. 2012).

Prior to disease severity, plant height was calculated, 
and after this, fresh and dry weight of roots and shoots 
were measured to determine the dry weight; plants were 
placed in moisture dryer chamber at 60  °C for 3  days. 
Means of parameters were calculated and compared for 
different treatments.

Open field trials
The study was conducted for 2 consecutive seasons early 
(season I: Jan-Mar) and late (season II: Sep-Dec) 2020 
to monitor the efficacy of potential Trichoderma under 
open field conditions. In season I, seedlings of the vari-
ety “Doucen” were grown in plastic seedling trays (50 
holes) containing peat moss (1:3). At 3–4 leaf stage, 
tomato seedlings were transplanted to the field, main-
taining 60 cm distance between rows and 45 cm within 
plants in a row. Suspensions of fungal Trichoderma were 
prepared as described above for greenhouse inoculation. 
Two weeks after transplanting, Trichoderma suspen-
sions were applied as foliar spray (100 mL per plant) on 
tomato plants with a garden sprayer (Skybird Agro Ind. 
Amritsar, Punjab, India), while Mancozeb fungicide as 
50  mg  L−1 was sprayed (50  mL/plant) (Majumder et  al. 
2020) with hand sprayer (Taizhou Jiolong Machinery Co., 
Ltd, Zhejiang, China). Control plants were sprayed with 
sterile distilled water only. All treatments were applied 
in the evening hours, and plants were left for natural 
pathogen infection under open field conditions. After 
applying treatments, weather conditions were monitored 
to exclude washout of pesticides as well as Trichoderma 
suspensions due to rain. Standard agronomic practices 
were carried out in field. Disease severity was recorded 
based on a grade 0–9 disease rating scale as: 0 = no infec-
tion, 1 = 0–10%, 2 = 10–20%, 3 = 20–30%, 4 = 30–40%, 
5 = 40–50%, 6 = 50–60%, 7 = 60–70%, 8 = 70–80%, 
9 = 80–90% or more leaf area infected (Singh et al. 2014) 
and percent disease severity was calculated by above 
mentioned formula. Ripened tomato fruits were har-
vested regularly from all replicates in all treatments and 
fruit yield per treatment was calculated.

The experiments were conducted under complete 
randomized block design with 4 replicates, each car-
rying 4 plants. All recommended agronomic practices 
were adapted in experimental zone. Plants were ran-
domly sprayed for each treatment. Experiment with same 
parameters was repeated in season II. Percent disease 
severity and fruit yield were calculated and compared 
among treatments.

Data analysis
All in  vitro experiments were conducted in triplicates, 
while field experiment was conducted with 4 replicates. 
Field experiments were performed in a complete rand-
omized design, and all collected data were analyzed by 
using statistix 8.1 (Analytical software, statistix; Talla-
hassee, FL, USA, 1985–2003) software. The data for dis-
ease severity were transformed into arcsine values, and a 
one-way analysis of variance (ANOVA) was performed. 
Means of replicates in all treatments were compared 
using Fisher’s least significant difference test at p = 0.05 
(Steel et al. 1996).

Results
Isolation and identification of potential Trichoderma
A total of 21 fungal isolates were collected from rhizo-
sphere of healthy tomato fields as starting material to 
identify potentially beneficial bioagents. Morphological 
characterization like mycelial growth rate, colony facade, 
conidial shape, structure of conidiophores and branch-
ing pattern of phialides was consistent with species of 
genus Trichoderma. Colony color was green/yellow to 
dark green/green; conidia were green to dark green. 
Most of the isolates showed green conidia color with 
2.5–5.3  µm size having globose to subglobose/obovoid 
conidial shape, while the phialide were slender, hooked, 
and flask shaped, as well as elongated with size 3.0–
11.5 µm × 2–6.2 µm (data not shown). Therefore, all iso-
lates were identified as members of genus Trichoderma. 
Based on morphological identification, isolates were used 
to study their antagonistic behavior against highly viru-
lent A. solani strain.

In vitro application of Mancozeb fungicide
All the tested concentrations of Mancozeb fungicide 
effectively inhibited the mycelial growth of A. solani. 
However, increase in the concentration of fungicide sup-
pressed the mycelial growth of A. solani, and at 400 ppm 
concentration, the mycelial growth was significantly 
inhibited (70.66%) than the control. In these results, all 
the used concentrations remained effective against the 
mycelial growth suppression of A. solani. Results showed 
that an increase in fungicide concentration reduced the 
growth of A. solani (Fig. 1).

Screening of antagonists and molecular characterization
All 21 potential bioagent isolates showed antagonistic 
activity against A. solani strain 9013 in  vitro. Pathogen 
mycelial growth inhibited by the isolates 1006, 1007 and 
1013 was significant (30.6, 27.3nd 23.3 mm), respectively, 
as compared to all other fungal bioagents. The colony 
diameter of pathogen growth in the dual culture plates 
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by the isolates 1018, 1021, 1003, 1011 and 1015 was 73.5, 
46.5, 45.6 44.6 and 46.3  mm, respectively, over control 
(82.66 mm) and other isolates (Fig. 2).

Potential bioagent isolates 1006, 1007 and 1013 iden-
tified by PCR amplification of internal transcribed 
spacer (ITS) regions showed approximately 560–680  bp 
length. Sequences were submitted to NCBI database 
under accession numbers MW590689, MW590687 and 

MW590688, respectively. Comparison of obtained ITS 
sequences to NCBI database entries by basic local align-
ment search tool (BLAST) indicated the isolate 1007 into 
the species Trichoderma harzianum (KR868283.1), 1013 
into T. longibrachiatum (MT409889.1), and the isolate 
1006 into T. atroviride (MT604177.1).

Phylogenetic analysis
The phylogenetic tree of 3 selected Trichoderma bioag-
ents (1006, 1007 and 1013) is represented in Fig.  3a–c 
constructed with 80–90% nucleotide sequences similarity 
from NCBI. In Fig. 3a, red dot demonstrated the identi-
fied isolate T. atroviride supported with a bootstrap value 
of 100% (Fig. 3b) T. harzianum was supported by a boot-
strap value of 97% and Fig. 3c T. longibrachiatum is sup-
ported by a bootstrap value of 99%.

Efficacy of Trichoderma spp. on disease severity 
under greenhouse conditions
Application of three Trichoderma isolates effectively 
reduced in early blight disease severity in greenhouse. 
Symptoms appeared after 15  days of inoculation as 
browning of tissues followed by necrosis. Earlier, oval 
shape spots were observed which extended and converted 
to concentric rings and changed to dark brown lesions. 
Disease severity of infected control was significantly 
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Fig. 3  Phylogenetic trees of identified isolates of Trichoderma, constructed by the analysis of ITS1 sequences with neighbor joining algorithm 
in MEGA 6X package. The numbers over branches represent the coefficient of bootstrap, tested by 100 replications. a Isolate 1006, identified as 
Trichoderma atroviride (accession no. MW590689); b Isolate 1007, identified as Trichoderma harzianum (accession no. MW590687); c Isolate 1013, 
identified as Trichoderma longibrachiatum (accession no. MW590688). A red dot in each figure represents the highest similarity of identified isolates 
based on the sequences available in NCBI

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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higher (77.91%) than other treatments, which conferred 
that the A. solani isolate “9013” was highly virulent 
(Fig. 4). Plants treated with Mancozeb fungicide showed 
lowest disease severity (7.91%). In comparison, the dis-
ease severity in plants treated with T. atroviride isolate 
1006 was 21.67%, while disease severity of plants treated 
with T. harzianum isolate 1007 and T. longibrachiatum 
isolate 1013 was 13.71and 25.83%, respectively.

Plant biomarkers
Results demonstrated that T. harzianum isolate 1007 and 
T. longibrachiatum isolate 1013 considerably increased 
the fresh and dry weight over infected plants that where 
otherwise untreated, indicating the efficacy of them as 
bio-control agents. Plants treated with Mancozeb fun-
gicide and bioagents also sustained the height of plants 
over infected plants that where otherwise untreated. The 
results (Table  1) showed that the inoculation of tomato 
with Trichoderma bioagents has an invigorating effect on 
plants. All treatments also improved the root weight as 
fresh and dry weight was higher than infected control.

Open field trials
In the field, percent disease severity was almost constant 
in differing between seasons (Fig. 5) among all treatments 
after 15 days of transplanting. Application of Mancozeb 
in field showed lower severity disease (%) in both seasons 
(7.18 and 6.31%). Treatments with Trichoderma spp. also 
showed promising and comparable effects for the reduc-
tion in disease severity over naturally infected control. 
However, in season I, treatment with T. atroviride isolate 
1006, T. harzianum isolate 1007 and T. longibrachiatum 
isolate 1013 showed promising potential in the reduction 
in disease severity as 13.26, 16.81% and 11.5%, respec-
tively, recorded. While in season II, disease severity after 
applying T. harzianum slightly reduced to 16.5%, disease 
severity percent after the application of T. atroviride and 
T. longibrachiatum was 16.12 and 16.5% that was lower 
than control (31.68%) but higher than fungicide treat-
ment (6.31%) (Fig.  5). Alternatively, under field experi-
ments, plant height was higher after treatment with 
Trichoderma bioagents compared to fungicide and water 

a

b
c

c
d

e
0
10
20
30
40
50
60
70
80
90

Inf. Control T.
longibrachiatum

T. atroviride T. harzianum Mencozeb Healthy Control

D
is

ea
se

se
ve

ri
ty

 (%
)

Treatments 

Fig. 4  Efficacy of bioagents on disease severity (%) of artificially 
inoculated virulent isolate of Alternaria solani on tomato plants in 
greenhouse. Values followed by different letters indicate that means 
are significantly different from one another according to Fisher’s least 
significant difference at p = 0.05. Error bars on graphs represents the 
Mean ± SE

Table 1  Effect of bioagents on growth parameters of tomato plants after inoculation with Alternaria solani under greenhouse 
conditions

In a column, means followed by a same letter(s) indicate no significant difference between the treatments according to least significant difference at p = 0.05

Treatments Plant height (cm) Shoot weight (g) Root weight (g)

Fresh Dry Fresh Dry

Mancozeb 29.91 ± 1.38 c 3.77 ± 0.71 c 0.76 ± 0.16 b 4.19 ± 0.75 b 0.97 ± 0.33 c

T. atroviride 29.25 ± 1.82 c 3.68 ± 0.79 c 0.69 ± 0.13 b 4.15 ± 0.56 b 1.26 ± 0.23 b

T. harzianum 32.66 ± 1.56 b 6.12 ± 1.31 b 1.5 ± 0.44 a 3.48 ± 0.49 c 0.64 ± 0.15 d

T. longibrachiatum 32.41 ± 2.57 b 4.82 ± 1.23 c 0.79 ± 0.18 b 3.72 ± 0.22 bc 0.72 ± 0.28 d

Infected Ctrl 18.25 ± 1.22 d 2.07 ± 0.63 d 0.28 ± 0.08 c 2.18 ± 0.12 d 0.21 ± 0.08 e

Healthy Ctrl 34.83 ± 1.59 a 10.29 ± 1.24 a 1.67 ± 0.33 a 5.19 ± 0.74 a 1.56 ± 0.16 a
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Fig. 5  Open field efficacy of Trichoderma bioagents against natural 
infection of Alternaria solani on tomato plants in two different 
seasons. Values followed by different letters indicates that means are 
significantly different from one another, while values followed by 
same letter indicate no significant difference in means according to 
Fisher’s least significant difference at p = 0.05. Error bars on graphs 
represent the Mean ± SE



Page 8 of 10Imran et al. Egyptian Journal of Biological Pest Control           (2022) 32:40 

treatment which indicated that Trichoderma bioagents 
might have acted as plant growth promoters.

In field conditions, the efficacy of Trichoderma bioag-
ents was assessed and compared with conventional fun-
gicide treatment. Fruits were randomly harvested for at 
least 3–4 times in each season. Fruit yield after applica-
tion of Mancozeb fungicide was 19.69  kg per plant in 
season I and 18.31 kg in season II, compared to 8.67 kg 
in season I and 8.08  kg in season II for untreated con-
trol plants. Thus, after fungicide application fruit yield 
was consistently higher in both seasons. Application of 
T. harzianum isolate 1007, T. atroviride isolate 1006 and 
T. longibrachiatum isolate 1013 also effectively increased 
the fruit yield in both seasons (Fig. 6). In season I, fruit 
yield after the application of T. harzianum isolate 1007, 
and T. longibrachiatum isolate 1013 was 13.92  kg and 
12.1  kg, respectively, followed by T. atroviride isolate 
1006 (10.91 kg). In season II, fruit yield after the applica-
tion of T. harzianum was 12.78 kg compared to T. atro-
viride (9.85 kg), and T. longibrachiatum (9.43 kg). Results 
showed that Trichoderma bioagents indeed protected 
fruit yield under field conditions, but not too the same 
extent as conventional fungicide treatment.

Discussion
Early blight disease of tomato caused by a fungal patho-
gen A. solani is the most significant disease (Rahmatzai 
et  al. 2017). Significant mycelial growth inhibition was 
recorded with mancozeb fungicide at 400 ppm over con-
trol. The fungicide concentrations used herein this study 
showed that the increase in the concentration of fun-
gicide significantly suppressed the mycelial growth of 
A. solani, and most probably at 2000  ppm the mycelial 

growth might be completely inhibited because the pre-
vious studies reported 86.4–100% mycelial growth inhi-
bition of A. solani with the 0.2% concentration of 
mancozeb (Adhikari et al. 2017). Further, the significant 
reduction in the mycelial growth of Fusarium oxysporum 
was obtained at 10, and 100 and 1000  ppm (Shah et  al. 
2006). More, the highest reduction in the growth (86.4%) 
of A. solani was achieved at 1500 ppm concentration of 
identical fungicide (Sadana and Didwania, 2015). A study 
by Vanitha et al. (2013) revealed that increase in the con-
centration significantly suppresses the A. solani growth 
these previously reported studies strongly support pre-
sent results.

Recent approaches have been made to use more eco-
friendly bioagents to control early blight disease (Behiry 
et  al. 2020) because biological control is considered an 
important approach over chemical control with fungal 
and bacterial antagonists to early blight pathogen. In 
the present study, 21 isolates of Trichoderma spp. were 
obtained from field sites with healthy tomato plants. 
Former studies have reported the antagonistic behavior 
of Trichoderma strains as effective bio-control agents 
against different disease such as T. harzianum against 
cucumber Rhizoctonia solani (Srivastava, 2021) and 
blight late disease in potato (Purwantisari et  al. 2021). 
Many Trichoderma, such as T. atroviride, T. virens and 
T. harzianum as bio-control can inhibit the pathogen 
growth (Kumar et  al. 2012). Trichoderma spp., showed 
significant mycelial growth suppression against many 
fungal pathogens by exhibiting the capability to contend 
for space and nutrients (Hirpara et  al. 2017) and ability 
for rapid growth was significant advantage for nutrient 
and space competition (Amira et al. 2017). These findings 
evidently and sturdily support these results.

Considerable increase in plant height, fresh and dry 
weight of roots and shoots was recorded over infected 
control. Trichoderma spp. as potential bio-control agents 
was reported with beneficial effects on the repression of 
pathogen by producing antifungal metabolites and anti-
biotic promoted the plant growth and caused significant 
yield improvement under greenhouse and field condi-
tions (Koley et  al. 2015). This may be due to the syner-
getic mode of action of Trichoderma which hindered the 
phytopathogen development (Alabouvette et  al. 2006). 
Further, similar findings were recorded when T. viride 
was used against A. solani of potato in greenhouse and 
significant reduction in disease severity was observed 
(Udhav, 2013). Similar results reported by various 
researchers strongly and clearly supported our findings 
and our finding corroborated that previous.

The present results showed remarkable difference 
(25.83, 21.67 and 13.74% disease severity after T. longi-
brachiatum, T. atroviride and T. harzianum,, respectively, 
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Fig. 6  Open field efficacy of Trichoderma bioagents on yield of 
tomato after natural infection of Alternaria solani in two different 
seasons. Values followed by different letters indicate that means are 
significantly different from one another, while values followed by 
same letter indicate no significant difference in means according to 
Fisher’s least significant difference at p = 0.05. Error bars on graphs 
represent the Mean ± SE
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treatment, followed by infected control (77.91%). 
Between all treatments, disease severity (%) after the 
application of mancozeb 90% WP (7.91%) in greenhouse 
was significant in comparison with all selected microbial 
antagonists. Similar findings have been reported when 
Ridomil (Mancozeb 64% + Metalaxyl 4%) along with 
selected bioagents was used against A. solani on tomato 
plants in greenhouse over treated control and recorded 
significant reduction in the intensity of early blight 
(Ngoc, 2013). Trichoderma spp. have also been reported 
as plant growth promoters (Sánchez-Montesinos et  al. 
2020). Field application of selected Trichoderma bioag-
ents showed significant reduction in disease severity in 
both seasons. The results here in showed that disease 
severity in both seasons was reduced after the application 
of Trichoderma bioagents than naturally infected control. 
Similar results were recorded by Kulimushi et al. (2021) 
upon field application of Trichoderma against early blight 
which caused significant reduction in disease severity 
(%), which strongly supported the present results. As in 
the results, fruit yield after treatments with T. harzianum 
was higher in both seasons than the control and followed 
by T. atroviride and T. longibrachiatum. However, stud-
ies reported the difference in yield with same antago-
nists (Ngoc 2013) and these variations might be due to 
the type of antagonists used, varieties and environmental 
conditions because antagonists could be influenced by 
diverse environmental factors like relative humidity tem-
perature and pH (Benítez et al. 2004).

Conclusion
The results presented in this study showed that native 
Trichoderma spp. could reduce the severity of early blight 
of tomato under the conditions in the Kingdom of Saudi 
Arabia. Further, these isolates may promote the growth 
and development of plants and ultimately increase the 
fruit yield. These isolates might be integrated with other 
management strategies to reduce the disease losses and 
sustainable tomato production.
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