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Abstract

In a previous study, we identified a protein elicitor AMEP412 from Bacillus subtilis, which could trigger plant defense
response and induce systemic acquired resistance. In the present study, the toxicity of AMEP412 against the whitefly Bemisia
tabaci (Genn.) (Hemiptera: Aleyrodidae) was reported. The purified protein samples at different concentrations (1, 5, 10, 20,
40, and 80 μg/ml) caused 17–96% mortality 2 days post-artificial adult feeding, where the median lethal concentration (LC50)
was calculated by 15.57 μg/ml. The stability test showed that AMEP412 had a good stability against thermo and natural
degradation. The fluorescence localization assay revealed that AMEP412 could be taken into the whitefly adult body and
localized in the gut. Based on the feature of this protein, AMEP412 was probably digested by gut proteases and led to the
release of hydrophobic fragments in the insect gut. It was deduced that these hydrophobic peptides could insert
themselves into the cell membrane and form lytic pores, leading to content leakage and cell lysis, followed by
insect death. This study sheds a light on the toxic effect of AMEP412, which not only enriched the function of the
protein elicitor but also provided a new choice for the biocontrol of whiteflies.
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Background
The whitefly Bemisia tabaci (Genn.) (Hemiptera: Aleyro-
didae) is an important insect pest to several crops, includ-
ing vegetables, cotton, and ornamentals (Byrne and
Bellows 1991). It damages crops by feeding on phloem
and transmitting plant viruses, leading to tremendous
losses in agricultural production and national economies
(Reitz 2007; Navas-Castillo et al. 2011). The main strategy
of controlling the whitefly was mainly based on chemical
insecticides. However, whitefly had developed resistance
to those excessively and frequently applied insecticides
(Wang et al. 2009; Luo et al. 2010; Houndété et al. 2010;
Vassiliou et al. 2011; Kontsedalov et al. 2012). Considering
this, exploring insecticides with novel mode of action
should be a new focus.
Compared to chemical insecticides, proteins with in-

secticidal activity acted in different modes, which lead to

insect resistance with a relatively low probability. There
were many reports about insecticidal proteins for pest
control. The most famous example was Cry toxin of Bacil-
lus thuringiensis (Bt), which was developed to Bt-trans-
genic cotton and effectively controlled the lepidopteran
pest larvae. The widespread planting of Bt-transgenic cot-
ton significantly reduced the usage of chemical pesticides.
However, none of the Cry toxins was reported effective on
whiteflies. In recent years, several researchers focused on
screening of insecticidal proteins from plants rarely
infested by whiteflies. Das et al. (2009) reported a man-
nose binding lectin from leaves of Allium sativum that
could effectively inhibit whiteflies. Jin et al. (2012)
expressed the Pinellia ternata agglutinin in chloroplasts
and conferred resistance against whiteflies. Shukla et al.
(2016) identified an insecticidal protein (Tma12) from an
edible fern and expressed it in transgenic cotton, which
showed a high level of resistance to whiteflies. Although
these insecticidal proteins showed a good potential for
whitefly control, for the low extraction rate or the limit of
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transgenic plant, there were no matured commercial
products in the market.
In a previous study, a protein elicitor (AMEP412) was

isolated from Bacillus subtilis, which could interact with
plant and induce serials of defense reactions (Shen et al.
2019). The study aimed to determine the toxic effect of
AMEP412 and provide a new choice for the biocontrol
of whiteflies. The localization of this protein in the in-
sect adults was detected by fluorescent labeling. More-
over, the stability of this protein against thermal and
natural degradation treatment was also determined.

Materials and methods
Bacterial strain and growth condition
Bacillus subtilis strain BU412, deposited in China Center
for Type Culture Collection (CCTCC M2016142), was
used for the production of AMEP412. Yeast malt extract
(YME) medium (Schaad et al. 2001) was used for grow-
ing the strain.

Preparation of AMEP412 protein
The protein AMEP412 was prepared by serials of purification
steps from the supernatant of B. subtilis BU412 culture, fol-
lowing Shen et al. (2019). The culture was centrifuged to ob-
tain the supernatant. The supernatant was filtered through
0.22-μm membrane to remove residues and then applied to
AKTA Purifier system (Amersham Biosciences). The purifi-
cation procedures included anion exchange chromatography
and size exclusion chromatography, using Source 15Q 4.6/
100 PE column and Superdex 75 10/300 GL column. The

fraction of the target protein was collected and adjusted to 1
mg/ml for further determination.

Insect bioassay
The artificial feeding of whiteflies followed the method de-
scribed by Upadhyay et al. (2011). Adult whiteflies (1–2
days old) were aspirated from plant leaves into 50-ml spe-
cimen tubes. The aqueous artificial diet consisted of 5%
yeast extract, and 30% sucrose (Blackburn et al. 2005) was
mixed with different concentrations of AMEP412 (1, 5,
10, 20, 40, and 80 μg/ml). The artificial diet without
AMEP412 was set as control. Diet (100 μl) was added be-
tween two stretched layers of UV-sterilized parafilm on
the tube cap, and then, the tube cap was reversed to cover
the tube, keeping the diet at inner side. At least 50 whitefly
adults were taken in each tube and the experiment was
performed three times. The bioassays were carried out for
2 days, and mortality was recorded by counting the dead
whitefly adults at the bottom of the tube.

Stability assay
In our previous study, AMEP412 showed a good thermo
stability as a protein elicitor. To test its thermo stability
as insecticidal protein, AMEP412 was subjected to 95 °C
for 15 and 30min, respectively. Furthermore, the natural
degradation of AMEP412 was also determined. The pro-
tein was placed in Eppendorf tube at room temperature
for 24 and 48 h, respectively. Then, the insecticidal activ-
ity of the protein (60 μg/ml) was determined after being
exposed to different conditions as described above, with

Fig. 1 Mortality of Bemisia tabaci adults fed on different concentrations of AMEP412. Means compared using Tukey’s HSD test at α = 5%; means
superscripted with the same letter within a column are not significantly different
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the untreated protein as control. Each treatment was re-
peated three times.

In vivo localization
As AMEP412 was purified from natural products, green
fluorescent protein (GFP) tag was not suitable for label-
ing the protein. Instead, fluorescein isothiocyanate
(FITC) was an ideal tag to label AMEP412. FITC-labeled
AMEP412 was prepared, following the previous method
(Shen et al. 2019). AMEP412 was incubated by FITC in
carbonate buffer (0.05M, pH 9.0) for 12 h at 4 °C. The
FITC and protein mixture was loaded onto a Superdex
75 10/300 GL column for separation according to the
different molecular sizes. Subsequently, 60 μg/ml FITC-
protein was used as insect diet for feeding bioassays as
described above. Dead insects were collected, washed by
sterile water, and then monitored by fluorescent micro-
scope (Olympus BX60) with an excitation wavelength of
495 nm for the localization of the tested protein.

Statistical analysis
The mortality data for whitefly adults in above assays
were analyzed by one-way ANOVA and the means were

compared by Tukey’s HSD test at α = 5%. The median
lethal concentration (LC50) value was calculated by the
probit analysis on the SPSS program (version 18).

Results and discussion
Insect bioassay
The mortality of whitefly adults ranged from 17 to 96%,
showing a positive relationship with the concentrations
of AMEP412 (Fig. 1). The LC50 value was calculated as
15.57 μg/ml (fiducial limits = 10.86–21.00; slope = 2.10;
95% confidence interval (CI) for slope 1.55–2.66; χ2 for
heterogeneity 0.83 calculated; χ2 significance value 0.84)
(Table 1). AMEP412 caused > 90% mortality at 63.27 μg/
ml. In a previous study (Shen et al. 2019), AMEP412 was
first reported as a protein elicitor with the function of
eliciting plant’s defense response and promoting plant’s
disease resistance. In this work, the toxic function of
AMEP412 against whitefly was demonstrated. This
meant that AMEP412 could affect both plant and insect
with benefit to plant health. This kind of dual-function
was rarely reported in other protein elicitors or insecti-
cidal proteins, which could be a great advantage for the
application of AMEP412.

Stability test
Compared to untreated AMEP412 samples (Fig. 2),
treatments at 95 °C for 15 and 30 min decreased the
mortality rate of whiteflies by 0.57 and 0.49%, re-
spectively. This result showed that thermo treatment
did not significantly affect the toxicity of AMEP412,

Table 1 The calculated LC50 of AMEP412 against B. tabaci

LC50
(μg/ml)

Lower 95% FL
(μg/ml)

Upper 95% FL
(μg/ml)

Slope ± SE χ2(df) P value

15.57 10.86 21.00 2.10 ± 0.28 0.83 (3) 0.84

Slope and SE (standard error) refer to probit analysis
95% fiducial limits (FL) of LC50 are given in parenthesis, respectively
Chi-square value (χ2) and degrees of freedom (df) as calculated by SPSS

Fig. 2 Mortality of Bemisia tabaci adults fed on AMEP412 subjected to thermal and natural degradation. Means compared using Tukey’s HSD test
at α = 5%; means superscripted with same letter within a column are not significantly different
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suggesting a good thermal stability of the protein. To
check the natural degradation, AMEP412 was placed
at room temperature for 24 and 48 h. Compared to
untreated AMEP412 samples, treatment at 25 °C for
24 and 48 h decreased the mortality of whiteflies by
2.73 and 16.38%, respectively. This result revealed
that significant degradation of AMEP412 occurred in
48 h. However, the sample still retained a majority of
activity, which was regarded as a good stability
against natural degradation. The results indicated that
AMEP412 had good thermo stability and stayed stable
with activity for about 2 days, which would be a great
advantage for application.
AMEP412 showed a good stability against thermo and

natural degradation, which was probably attributed to its
stable spatial structure. As mentioned in a former study
(Shen et al. 2019), AMEP412 formed polymers in aque-
ous environment, which enhanced its spatial structure
against external interferences like thermo and natural
degradation. Moreover, the polymerization state could
also hide some enzyme digestion sites, leading to a cer-
tain resistance to enzymes. This feature will definitely
broaden the application areas and improve the insecti-
cidal effects.

AMEP412 localized in whitefly guts
As shown in Fig. 3, the fluorescence was mainly localized
in the guts of the insect body. This result suggested that
AMEP412 had been taken into the insect body and mainly
localized in the guts, which indicated that AMEP412
exerted toxic activity in whitefly guts. Some insecticidal
proteins acted as serine proteases (trypsin) inhibitors to
interrupt the digestion function of insect gut, which finally
lead to insect death (Macedo et al. 2010, 2011;Saadati and
Bandani 2011). However, according to obtained results
(data not shown), AMEP412 could not inhibit the activity
of trypsin, suggesting that certain other mechanism was
employed.
Beside serine proteases inhibitor, another kind of insecti-

cidal protein functioned in insect gut was Cry toxin. Cry
proteins, the crystal inclusion protoxins of B. thuringiensis,
could be cleaved by gut proteases to yield Cry toxins. With
hydrophobic character, Cry toxins could insert themselves
into cell membrane and form lytic pores, which lead to ion
leakage, cell lysis, and insect death (Aronson and Shai 2001;
Bravo et al. 2005). The amino acid sequence analysis of
AMEP412 revealed several trypsin cleavage sites (K), which
were pointed out by an arrow in Fig. 4. The multiple cleav-
age sites indicated that AMEP412 was sensitive to trypsin
cleavage. Another noticeable feature of AMEP412 was the
highest content of hydrophobic amino acids (38 of 76 and
50%, underlined in Fig. 4), indicating the highest probability
of forming hydrophobic peptides after digestion. When sol-
uble AMEP412 polymers were taken into insect guts, gut
proteases like trypsin would digest the polymers from the
surface, resulting in the release of hydrophobic fragments.
It was deduced that these hydrophobic peptides had a pos-
sibility to insert themselves into the membrane of gut cell
forced by hydrophobic interaction and form lytic pores,
which further caused the release of cell contents even to in-
sect death.

Conclusion
Insecticidal activity of AMEP412 against whitefly showed
a good stability against thermo and natural degradation.
The fluorescent localization revealed insect guts as its
function position. The possible mechanism was discussed
based on partial assay result and the feature of AMEP412.
In future research, the exact mechanism will be clarified
by studying the interaction between AMEP412 and white-
fly gut cells. Moreover, the toxicity as insecticidal activity
of AMEP412 against other insects will be investigated to
fully understand its anti-insect spectrum.

Fig. 3 The fluorescent localization of AME412 in Bemisia tabaci body

Fig. 4 The amino acid sequence analysis of AMEP412. Arrows point to the cleave sites of trypsin; underlined means the hydrophobic amino acids
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