Skip to main content

Table 1 Mathematical models used to describe the effect of temperature on the developmental rate of the common green lacewing, Chrysoperla carnea, and their capacity to estimate three important biological parameters

From: Modeling of the effect of temperature on developmental rate of common green lacewing, Chrysoperla carnea (Steph.) (Neuroptera: Chrysopidae)

Model Tmin Topt Tmax Equation Reference
Briere-1 \( \frac{1}{D}= aT\left(T-{t}_{\mathrm{min}}\right)\sqrt{\left({t}_{\mathrm{max}}-T\right)} \) Briere et al. (1999)
Briere-2 \( \frac{1}{D}= aT\left(T-{t}_{\mathrm{min}}\right){\left({T}_{\mathrm{max}}-T\right)}^{\frac{1}{d}} \) Briere et al. (1999)
Lactin-2 - \( \frac{1}{D}={e}^{\rho T}-{e}^{\left(\rho {T}_L-\left(\frac{T_L-T}{\Delta T}\right)\right)}+\lambda \) Lactin et al. (1995)
Logan-6 \( \frac{1}{D}=\psi \left[{e}^{\rho T}-{e}^{\left(\rho {t}_{\mathrm{max}}-\frac{t_{\mathrm{max}}-T}{\Delta}\right)}\right] \) Logan et al. (1976)
Logan-10 \( \frac{1}{D}=a\left[\frac{1}{1+{ke}^{-\rho T}}-{e}^{\left(-\frac{t_{\mathrm{max}}-T}{\Delta}\right)}\right] \) Logan et al. (1976)
Polynomial 3rd order - \( \frac{1}{D}={aT}^3+{bT}^2+ cT+d \) Harcourt and Yee (1982)
  1. *shows the model has ability to estimate this biological parameter